Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-25T07:09:57.507Z Has data issue: false hasContentIssue false

Constraints on stellar evolution from pulsations

Published online by Cambridge University Press:  04 August 2017

Arthur N. Cox*
Affiliation:
Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545 USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the δ Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists.

Type
III. BINARITY, PULSATION, ROTATION AND MIXING
Copyright
Copyright © Reidel 1984 

References

Andreasen, G.K., Hejlesen, P.M., and Petersen, J.O. 1983, Astron. Ap. in press.Google Scholar
Balona, L.A. and Stobie, R.S. 1979, M.N.R.A.S. 189, 659.CrossRefGoogle Scholar
Barrell, S.L. 1981, M.N.R.A.S. 196, 357.CrossRefGoogle Scholar
Becker, S.A. and Cox, A.N. 1982, Ap. J. 260, 707.CrossRefGoogle Scholar
Bell, R.A. and Parsons, S.B. 1972, Ap Letters, 12, 5.Google Scholar
Burki, G. 1983, Astron. Ap. 1983, in press.Google Scholar
Christensen-Dalsgaard, J. 1982, M.N.R.A.S. 199, 735.CrossRefGoogle Scholar
Claverie, A., Issak, G.R., McLeod, C.P., Van der Raay, B., and Cortes, Roca 1981, Nature 293, 443.Google Scholar
Cottrell, P.L. and Lambert, D.L., 1982, Ap. J. 261, 595.Google Scholar
Cox, A.N. 1979, Ap. J. 229, 212.CrossRefGoogle Scholar
Cox, A.N., Hodson, S.W., and Clancy, S.P. 1981, in IAU Colloquium 68, “Astrophysical Parameters for Globular Clusters,” eds. Davis Philip, A.G. and Hayes, D.S. L. Davis Press, Inc, Schenectady, New York p337.Google Scholar
Cox, A.N., Hodson, S.W., and Clancy, S.P. 1983, Ap. J. 266, 94.CrossRefGoogle Scholar
Cox, A.N., King, D.S., and Hodson, S.W. 1979, Ap. J. 228, 870.Google Scholar
Cox, A.N. and Stewart, J.N. 1965, Ap.J. Suppl., 11, 22.Google Scholar
Deupree, R.G. 1977, Ap. J. 214, 502.Google Scholar
Fernie, J.D. 1979, Ap. J. 231, 841.CrossRefGoogle Scholar
Fitch, W.S. 1955, Ap. J. 121, 690.CrossRefGoogle Scholar
Flower, P.J. 1977, Astron. Ap. 54, 31.Google Scholar
Grec, G., Fossat, E., and Pomerantz, M. 1980, Nature 288, 541.CrossRefGoogle Scholar
Hanson, R.B. 1977, in IAU Symposium 80, “The H-R Diagram” eds. Davis Philip, A.G. and Hayes, D.S., Reidel, Dordrecht, p154.Google Scholar
Huang, R.Q. and Weigert, A. 1983, Astron. Ap. in press.Google Scholar
Jorgensen, H.E. and Petersen, J.O. 1967, Zs. Ap. 67, 377.Google Scholar
Luck, R.E. and Lambert, D.L. 1981, Ap. J. 245, 1018.Google Scholar
Maeder, A. 1981, Astron. Ap. 102, 401.Google Scholar
Maeder, A. and Mermilloid, J.C. 1981, Astron. Ap. 93, 136.Google Scholar
Matraka, B., Wassermann, C., and Weigert, A. 1982, Astron. Ap. 107, 283.Google Scholar
Paczynski, B. 1970, Acta Astr. 20, 195.Google Scholar
Paczynski, B. 1971, Acta Astr. 21, 1.Google Scholar
Pel, J. 1978, Astron. Ap. Suppl. 31, 489.Google Scholar
Robertson, J.W. 1971, Ap. J. 170, 353.CrossRefGoogle Scholar
Robertson, J.W. 1973, Ap. J. 185, 817.CrossRefGoogle Scholar
Robertson, J.W. and Faulkner, D.J. 1972, Ap. J. 171, 309.CrossRefGoogle Scholar
Saio, H. and Wheeler, J.C. 1983, Ap.J. Lett. 272, L25.Google Scholar
Sandage, A. 1981, Ap. J. 248, 161.Google Scholar
Sandage, A., Katem, B., and Sandage, M. 1981, Ap.J. Suppl. 46, 41.CrossRefGoogle Scholar
Sherrer, P. H., Wilcox, J. H., Christensen-Dalsgaard, J. and Gough, D. O. 1982, preprint.Google Scholar
Sweigart, A.V. and Gross, P.G. 1976, Ap.J. Suppl. 32, 367.CrossRefGoogle Scholar
Tassoul, M. 1980, Ap.J. Suppl. 43, 469.Google Scholar
Ulrich, R.K. and Rhodes, E.J. 1983, Ap. J. 265, 551.Google Scholar
Vandakurov, Y.V. 1967, Ast. Zh. 44, 786.Google Scholar