Hostname: page-component-788cddb947-t9bwh Total loading time: 0 Render date: 2024-10-15T05:02:28.122Z Has data issue: false hasContentIssue false

Collisional Processes of Iron and Steel Projectiles on Targets of Different Densities

Published online by Cambridge University Press:  14 August 2015

H. Fechtig
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG E. Schneider Ernst-Mach-Institut, Freiburg i. Br., FRG
K. Nagel
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG E. Schneider Ernst-Mach-Institut, Freiburg i. Br., FRG
N. Pailer
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG E. Schneider Ernst-Mach-Institut, Freiburg i. Br., FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cratering experiments for μm- and mm-sized iron- and steel-projectiles on various target materials show that crater depths and the ratios of crater diameter to crater depth D/T depend on the densities of the projectile- and target-material and on the ductility of the target material. Cratering experiments into low density material (Saffile ρ = 0.28 g/cm3) have produced elongated impact “craters”. For low target densities the “crater” depth is up to 100 times the projectile diameter, depending on its impact speed. This impact process leads to a complete accretion of the projectile mass within the target.

Type
IV: The Interplanetary Dust Complex 2. Physical Properties
Copyright
Copyright © Reidel 1980 

References

Brownlee, D.E., Hörz, F., Vedder, J.F., Gault, D.E., and Hartung, J.B.: 1973, “Some physical parameters in micrometeoroids”, Proc. Lunar Sci. Conf. 4th, pp. 31973213 Google Scholar
Cannon, E.T., and Turner, G.H.: 1967, “Cratering in low-density targets”, NASA CR-798 Google Scholar
Fechtig, H., Grün, E., and Kissel, J.: 1978, “Laboratory Simulation” as Chapter 9 in “Cosmic Dust”, John Wiley and Sons, Chichester, Ed. McDonnell, J.A.M. Google Scholar
Fish, R.H., and Summers, J.L.: 1965, “The effects of material properties on threshold penetration”, Proc. 7th Hypervelocity Impact Symposium 3, 2 Google Scholar
Hartmann, W.K.: 1978, “Planet formation: mechanism of early growth”, Icarus 33, pp. 5061 Google Scholar
Nagel, K., and Fechtig, H.: 1979, “Diameter to depth dependence of impact craters”, submitted for publication to “Planetary and Space Science”.CrossRefGoogle Scholar
Nagel, K., Neukum, G., Dohnanyi, J.S., Fechtig, H., and Gentner, W.: 1976a, “Density and chemistry of interplanetary dust particles, derived from measurements of lunar microcraters”, Proc. Lunar Sci. Conf. 7th, pp. 10211029 Google Scholar
Nagel, K., Neukum, G., Eichhorn, G., Fechtig, H., Müller, O., and Schneider, E.: 1975, “Dependencies of microcrater formation on impact parameters”, Proc. Lunar. Sci. Conf. 6th, pp. 34173432 Google Scholar
Nagel, K., Neukum, G., Fechtig, H., and Gentner, W.: 1976b, “Density and composition of interplanetary dust particles”, Earth Planet. Sci. Lett. 30, pp. 234240 Google Scholar
Pailer, N., and Grün, E.: 1979, “The penetration limit of thin films”, submitted for publication to “Planetary and Space Science”.CrossRefGoogle Scholar
Smith, D., Adams, N.G., and Khan, H.A.: 1974, “Flux and composition of micrometeoroids in the diameter range 1-10 μm”, Nature 252, pp. 101106 Google Scholar
Vedder, J.F., and Mandeville, J.-C.: 1974, “Microcraters formed in glass by projectiles of various densities”, J. Geophys. Res. 79, pp. 32473256 Google Scholar