Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T12:04:53.717Z Has data issue: false hasContentIssue false

The Asymptotic Giant Branch

Published online by Cambridge University Press:  25 May 2016

J. C. Lattanzio
Affiliation:
Department of Mathematics, Monash University, Australia
C. A. Frost
Affiliation:
Department of Mathematics, Monash University, Australia

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For stars with masses between about 1 and 8 M the ascent of the Asymptotic Giant Branch (AGB) is the last nuclear powered evolutionary stage. Following this the stars eject a planetary nebula and fade as white dwarfs. Although only short in duration, the AGB is very important due to the nucleosynthesis which occurs. Here we briefly review the species produced and the mechanism for their production. We then discuss the current uncertainties in quantitative predictions of this nucleosynthesis, which centre on our determination of convective boundaries.

Type
Evolved Stars
Copyright
Copyright © Kluwer 1997 

References

Boothroyd, A. I. & Sackmann, I.-J., 1992, Astrophys. J. Lett , 393, L21.Google Scholar
Boothroyd, A. I., Sackmann, I.-J., & Ahern, S. C., 1993, Astrophys. J. , 416, 762.CrossRefGoogle Scholar
Boothroyd, A. I., Sackmann, I.-J., & Wasserburg, G. J., 1994, Astrophys. J. Lett , 430, L77.Google Scholar
Boothroyd, A. I., Sackmann, I.-J., & Wasserburg, G. J., 1995, Astrophys. J. Lett , 442, L21.Google Scholar
Cameron, A. G. W., & Fowler, W. A., 1971, Astrophys. J. , 164, 111.CrossRefGoogle Scholar
Forestini, M., Goriely, S., Jorissen, , & Arnould, M., 1992, Astron. Astrophys. , 261, 157.Google Scholar
Frost, C.A. & Lattanzio, J. C., 1996a in Stellar Evolution: What Should Be Done? , Proceedings of the 32nd Liege Colloquium, Eds Noels, A. et al, 307.Google Scholar
Frost, A.C., & Lattanzio, J. C., 1996b, Astrophys. J. , 473, 383.Google Scholar
Gallino, R., et al. 1994, Astrophys. J. , 430, 858.Google Scholar
Gallino, R. & Busso, M., 1997, in Proceedings of Astrophysical Implications of Laboratory Study of Interstellar Grains , in press.Google Scholar
Groenewegen, M. A. T., & de Jong, T., 1993, Astron. Astrophys. , 267, 410.Google Scholar
Iben, I. Jr., & Renzini, A., 1982a, Astrophys. J. Lett , 259, L791.CrossRefGoogle Scholar
Iben, I. Jr., & Renzini, A., 1982a, Astrophys. J. Lett , 263, L231.Google Scholar
Iben, I. Jr., & Renzini, A., 1983, Ann. Rev. Astr. Ap. , 21, 271.Google Scholar
Jorissen, A., Smith, V. V., & Lambert, D. L., 1992, Astron. Astrophys. , 261, 164.Google Scholar
Lattanzio, J. C., Frost, C. A., Cannon, R. C., & Wood, P. R., 1996, Mem. Astro. Soc. Italia , in press.Google Scholar
Lattanzio, J. C., Frost, C. A., Cannon, R. C., & Wood, P. R., 1997a, “Nucleosynthesis in Intermediate Mass Stars” in The Carbon Star Phenomenon , Proceedings of IAU Symposium 177, Ed Wing, R. F., in press.Google Scholar
Lattanzio, J. C., Frost, C. A., Cannon, R. C., & Wood, P. R., 1997b, in preparation.Google Scholar
Mowlavi, N., Jorissen, A., & Arnould, M., 1996, Astron. Astrophys. , 311, 803.Google Scholar
Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R., & Zinner, E. K., 1994, Nature, 370, 443.Google Scholar
Straniero, O., Gallino, R., Busso, M., Chieffi, A., Limongi, M., and Salaris, M., 1995, Astrophys. J. Lett , 440, L85.CrossRefGoogle Scholar
Vassilliadis, E. & Wood, P. R., 1993, Astrophys. J. , 413, 641.Google Scholar
Wood, P. R., 1981, Astrophys. J. , 248, 311.CrossRefGoogle Scholar
Wood, P. R., Bessell, M. S., & Fox, M. W., 1983, Astrophys. J. , 272, 99.CrossRefGoogle Scholar