Skip to main content Accessibility help
×
Home

26. Photospheric magnetic fields

  • H. W. Babcock (a1) and H. D. Babcock (a1)

Abstract

Since 1952 a total of 635 magnetograms of the sun have been obtained in a systematic investigation of weak magnetic fields in the photosphere. The frequent records give the location, polarity, and intensity of weak fields down to a fraction of 1 gauss, although with resolution limited to about 0·04 of the solar diameter.

Confirmation of previously reported results in 1954 comes from continuation of the series and from observations with a second, improved magnetograph on Mount Wilson. Three types of field pattern are found: (1) the poloidal field in high heliographic latitudes, consistently positive in the north, negative in the south, with intensity of the order of 1 gauss; (2) BM (bipolar magnetic) regions, often weak and extended, but which when strong are associated with plages, spots, flares, coronal emission, chromospheric fine structure, and filaments; and (3) UM (unipolar magnetic) regions, rather extended and weak, occurring in low latitudes, and associated in time with 27-day recurrent geomagnetic storms and cosmic-ray fluctuations. Attention is directed to the probable disposition of the magnetic flux in the high atmosphere and in interplanetary space, consistent with the observed magnetic areas and with the restriction div H = 0.

Alfvén has argued that the interpretation of the small Zeeman displacements is meaningless and irrelevant because the rather strong turbulent fields presumed to prevail in granules might be coupled systematically, in respect to magnetic polarity, with the intensity of the absorption lines used for measurement. But this would produce a bias, with a shift of zero point of magnetic intensity, for all observed fields on the disk, and no such bias is observed. The measurements, while limited in resolution, are on an absolute scale, and show, for the ‘quiet sun’, vast areas with only small random fields no greater than a few tenths of 1 gauss.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      26. Photospheric magnetic fields
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      26. Photospheric magnetic fields
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      26. Photospheric magnetic fields
      Available formats
      ×

Copyright

References

Hide All
1. Babcock, H. W. Astrophys. J. 118, 387, 1953.
2. Babcock, H. W. and Babcock, H. D. Astrophys. J. 121, 349, 1955.
3. Alfvén, H. Nature, Lond. 168, 1036, 1951.
4. Alfvén, H. Ark. Fys. 4, no. 24, 1952.
5. Alfvén, H. Tellus , 8, 1, 1956.
6. Simpson, J. A., Babcock, H. W. and Babcock, H. D. Phys. Rev. 98, 1402, 1955.

26. Photospheric magnetic fields

  • H. W. Babcock (a1) and H. D. Babcock (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed