Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T08:49:40.877Z Has data issue: false hasContentIssue false

Cenozoic Marine Diatom Biostratigraphy and Applications to Paleoclimatology and Paleoceanography

Published online by Cambridge University Press:  17 July 2017

John A. Barron
Affiliation:
U.S. Geological Survey, MS 915, 345 Middlefield Road, Menlo Park, California 94025-3561
Jack G. Baldauf
Affiliation:
Ocean Drilling Program and Texas A&M University, College Station 77845-9547

Extract

Diatoms, golden brown algae, are present in most aqueous environments. Within the marine environment marine diatoms occupy the photic zone and represent the lowest level of the marine food chain. Diatoms are either planktonic or benthic and possess an external siliceous skeleton or frustule, that is boxlike in structure. The size of diatom frustules ranges from less than 1 μm to more than 1,000 μm, but most frustules range in size from 10 to 100 μm. Diatoms are present in the geological record from at least the Cretaceous (Harwood and Nikolaev, this volume) and have numerous advantages for biostratigraphic correlation and paleoenvironmental reconstruction of marine sedimentary sequences. This chapter summarizes the current state of marine diatom biostratigraphy for the Cenozoic and provides examples of how marine diatoms are used in paleoenvironmental reconstructions. No attempt is made to illustrate the various diatom taxa discussed; the reader is referred to published references such as the syntheses of Fenner (1985) and Barron (1985).

Type
Research Article
Copyright
Copyright © 1995 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiba, F. 1986. Middle Miocene to Quaternary diatom biostratigraphy in the Nankai Trough and Japan Trench, and modified lower Miocene through Quaternary diatom zones for the middle-to-high latitudes of the North Pacific, p. 393481. In Kagami, H. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 87. U.S. Government Printing Office, Washington, D.C. Google Scholar
Aubry, M.-P., Berggren, W. A., Kent, D. V., Flynn, J. J., Klitgord, K. D., Obradovich, J. D., and Prothero, D. R. 1988. Paleogene geochronology: an integrated approach. Paleoceanography, 3:707742.CrossRefGoogle Scholar
Baldauf, J. G. 1993. Middle Eocene through early Miocene diatom floral turnover, p. 310326. In Prothero, D. and Berggren, W. A. (eds.), Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Baldauf, J. G., and Barron, J. A. 1990. Evolution of biosiliceous sedimentation patterns - Eocene through Quaternary: paleoceanographic response to polar cooling, p. 575607. In Bleil, U. and Thiede, J. (eds.), Geological History of the Polar Oceans: Arctic versus Anatarctic. Kluwer Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Baldauf, J. G., and Iwai, M. in press. Neogene diatom biostratigraphy for the eastern equatorial Pacific, Ocean Drilling Program Leg 138. In Pisias, N. G. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 138. Ocean Drilling Program, College Station, Texas.Google Scholar
Barron, J. A. 1985. Miocene to Holocene planktic diatom stratigraphy, p. 413456. In Bolli, H. M. et al. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Barron, J. A. 1992. Neogene diatom datum levels in the equatorial and North Pacific, p. 413425. In Ishizaki, K. and Saito, T. (eds.), The Centenary of Japanese Micropaleontology. Tokyo University Press, Tokyo.Google Scholar
Barron, J. A., and Baldauf, J. G. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments, p. 341354. In Berger, W. H. et al., (eds), Productivity of the oceans: Present and Past. Dahlem Workshop Reports. John Wiley, New York.Google Scholar
Barron, J. A., and Gladenkov, A. Y. In press. Early Miocene to Pleistocene diatom stratigraphy of Leg 145. In Rea, D. K. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 145. Ocean Drilling Program, College Station, Texas.Google Scholar
Burckle, L. H., and Cooke, D. W. 1983. Late Pleistocene Eucampia antarctica abundance stratigraphy in the Atlantic sector of the Southern Ocean. Micropaleontology, 29:610.CrossRefGoogle Scholar
Cande, S. C., and Kent, D. V. 1992. A new geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97:1391713951.CrossRefGoogle Scholar
Fenner, J. 1984. Eocene-Oligocene planktic diatom stratigraphy in the low latitudes and high southern latitudes. Micropaleontology, 30:319342.CrossRefGoogle Scholar
Fenner, J. 1985. Late Cretaceous to Oligocene planktic diatoms, p. 413456. In Bolli, H. M. et al. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Fenner, J. 1991. Taxonomy, stratigraphy, and paleoceanographic implications of Paleocene diatoms, p. 123154. In Ciesielski, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 114. Ocean Drilling Program, College Station, Texas.Google Scholar
Fenner, J., and Mikkelsen, N. 1990. Eocene-Oligocene diatom in the western Indian Ocean: taxonomy, stratigraphy, and paleoecology, p. 433463. In Duncan, R. A. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 115. Ocean Drilling Program, College Station, Texas.Google Scholar
Fourtanier, E., 1991. Paleocene and Eocene diatom biostratigraphy and taxonomy of eastern Indian Ocean Site 752, p. 171187. In Weissel, J. et al., (eds), Proceedings of the Ocean Drilling Program, Science Results, 121. Ocean Drilling Program, College Station, Texas.Google Scholar
Gombos, A. M. Jr., and Ciesielski, P. F. 1983. Late Eocene to early Miocene diatoms from the southwest Atlantic, p. 793804. In Ludwig, W. J. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 87. U.S. Government Printing Office, Washington, D. C. Google Scholar
Harwood, D. M., and Maruyama, T. 1992. Middle Eocene to Pleistocene diatom biostratigraphy of Southern Ocean sediments from the Kerguelen Plateau, Leg 120, p. 683733. In Wise, S. W. Jr., et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 120. Ocean Drilling Program, College Station, Texas.Google Scholar
Harwood, D. M., and Nikolaev, V. A. 1995. Cretaceous diatoms: morphology, taxonomy, biostratigraphy, p. 81106. In Blome, C. D. et al. (convenors), Siliceous Microfossils. Paleontological Society Short Courses in Paleontology, 8.Google Scholar
Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. C., and Miller, J. 1978. Diagenesis of Late Cenozoic diatomaceous deposits and formation of the bottom stimulating reflector in the southern Bering Sea. Sedimentology, 25:155181.CrossRefGoogle Scholar
Jousé, A. P. 1982. Paleocene diatoms and silicoflagellates from the Indian and Atlantic Ocean, p. 131145. In Morskaya Mikropaleontologiya. Nauka, Moscow.Google Scholar
Kemp, A. E. S., and Baldauf, J. G. 1993. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 362:141143.CrossRefGoogle Scholar
Koc Karpurz, N., and Schrader, H.-J. 1990. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland, and Norwegian Sea. Paleoceanography, 5:557580.CrossRefGoogle Scholar
Laws, R. A. 1983. Preparing strewn slides for quantitative microscopical analysis: a test using calibrated microspheres. Micropaleontology, 29:6065.CrossRefGoogle Scholar
Lisitzin, A. P. 1972. Sedimentation in the World Ocean. Society of Economic Paleontologists and Mineralogists Special Publication 17.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2:120.CrossRefGoogle Scholar
Pichon, J.-J., Labeyrie, L. D., Bareille, G., Labracherie, M., Duprat, J., and Jouzel, J. 1992. Surface water temperature changes in the high latitudes of the Southern Hemisphere over the last glacial-interglacial cycle. Paleoceanography, 7:289318.CrossRefGoogle Scholar
Sancetta, C., Villareal, T., and Falkowski, P. 1991. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnology and Oceanography, 36:14521456.CrossRefGoogle Scholar
Strelnikova, N. I. 1990. Evolution of diatoms during the Cretaceous and Paleogene periods, p. 195204. In Simola, H. (ed.), Proceedings of the Tenth International Diatom Symposium. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Strelnikova, N. I. 1991. Evolution of marine diatoms: Cretaceous and Paleogene. Algologia, 1:6572.Google Scholar