Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.562 Render date: 2021-02-25T09:09:50.520Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Arthropod Terrestriality

Published online by Cambridge University Press:  17 July 2017

Conrad C. Labandeira
Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
Bret S. Beall
Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605
Get access


Since the late Paleozoic, insects and arachnids have diversified in the terrestrial world so spectacularly that they have become unquestionably the most diverse group of organisms to ever inhabit the planet. In fact, this 300 million year interval may appropriately be referred to as the age of arthropods. What is the origin and history of terrestrial arthropods? How is arthropod diversity maintained on land? In this rhetorical context we will discuss (1) the degree to which terrestriality is found in arthropods, (2) the physiological barriers to terrestrialization that arthropod clades confronted, (3) the historical record of arthropod diversity on land based on paleobiological, comparative physiological and zoogeographical evidence, and (4) some tentative answers to the “why” of terrestrial arthropod success. We are providing a geochronologic scope to terrestriality that includes not only the early history of terrestrial arthropods, but also the subsequent expansion of arthropods into major terrestrial habitats.

Research Article
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.


Almond, J.E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society of London, 309B: 227237.CrossRefGoogle Scholar
Arnoldi, L.V. 1977. Suborder Polyphaga. Infraorder Rhynchophora. Family Eobelidae. In Rohdendorf, B.B. (ed.), Mesozoic Coleoptera. Transactions of the Paleontological Institute, 161: 144176. [In Russian.] Google Scholar
Bartram, K.M., Jeram, A.J., and Selden, P.A. 1987. Arthropod cuticles in coal. Journal of the Geological Society of London, 144: 513517.CrossRefGoogle Scholar
Beall, B.S. 1984. Functional and autecological analysis of phlangiotarbid arachnids. Geological Society of America Abstracts with Programs, 16: 440.Google Scholar
Beall, B.S. 1986. Parallel patterns of terrestrial faunal and floral extinction in the Late Carboniferous. Geological Society of America Abstracts with programs, 19: 583.Google Scholar
Beall, B.S., and Labandeira, C.C. 1990. The origination of leaf-mining: evolution of a behavior. Submitted.Google Scholar
Beerbower, R. 1985. Early development of continental ecosystems. p. 4791. In Tiffney, B.H. (ed.), Geological Factors and the Evolution of Plants. Yale University Press, New Haven.Google Scholar
Bernays, E.A. 1986. Evolutionary contrasts in insects: nutritional advantages of holometabolous development. Physiological Entomology 11: 377382.CrossRefGoogle Scholar
Bernays, E.A., and Barbehenn, R. 1987. Nutritional ecology of grass foliage-chewing insects. p. 105146. In Slansky, F. Jr. and Rodriguez, J.G. (eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley and Sons, New York.Google Scholar
Blackwelder, R.E., and Garoian, G.S. 1986. CRC Handbook of Animal Diversity. CRC Press, Boca Raton, Florida, 555 p.Google Scholar
Bliss, D.E. 1968. Transition from water to land in decapod crustaceans. American Zoologist, 8:355392.Google Scholar
Boudreaux, H.B. 1987. Arthropod Phylogeny with Special Reference to Insects. Robert E. Krieger Publishing Company, Malabar, FL, 320 p.Google Scholar
Bousfield, E.L. 1968. Discussion: transition to land. American Zoologist, 8:393395.Google Scholar
Bousfield, E.L. 1984. Recent advances in the systematics and biogeography of landhoppers (Amphipoda: Talitridae) of the Indo-Pacific Region. In Radovsky, F.J., Raven, P.H., and Sohmer, S.H. (eds.), Biogeography of the Tropical Pacific, Proceedings of a Symposium. Bishop Museum Special Publication, 72:171210.Google Scholar
Brauckmann, C., and Zessin, W. 1989. Neue Meganeuridae aus dem Namurium von Hagen-Vorhalle (BRD) und die Phylogenie der Meganisoptera Insecta, Odonata). Deutsche Entomolische Zeitschrift, 36:177215.CrossRefGoogle Scholar
Briggs, D.E.G., and Clarkson, E.N.K. 1989. Environmental controls on the taphonomy and distribution of Carboniferous malacostracan crustaceans. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80:293301.CrossRefGoogle Scholar
Campbell, K.S.W., and Bell, M.W. 1977. A primitive amphibian from the late Devonian of New South Wales. Alcheringa, 1:369381.CrossRefGoogle Scholar
Carpenter, F.M. 1971. Adaptations among Paleozoic insects. Proceedings of the North American Paleontological Convention (Chicago), 1:12361251.Google Scholar
Carpenter, F.M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.CrossRefGoogle Scholar
Cater, J.M.L., Briggs, D.E.G. and Clarkson, E.N.K. 1989. Shrimp-bearing sedimentary successions in the Lower Carboniferous (Dinantian) Cementstone and Oil Shale Groups of northern Britain. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80:515.CrossRefGoogle Scholar
Chaloner, W.G. 1985. Discussion. Transactions of the Royal Society of London, 309B:192.Google Scholar
Cichan, M.A., and Taylor, T.N. 1982. Wood-borings in Premoxylon: plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39:123127.CrossRefGoogle Scholar
Claridge, M.F., and Lyon, A.G. 1961. Lung-books in the Devonian Palaeocharinidae (Arachnida). Nature, 191:11901191.CrossRefGoogle Scholar
Cloudsley-Thompson, J.L. 1950. The water relations and cuticle of Paradesmus gracilis (Diplopoda, Strongylosomidae). Quarterly Journal of Microscopical Science, 94: 453464.Google Scholar
Cloudsley-Thompson, J.L. 1968. Spiders, Scorpions, Centipedes and Mites. Pergamon Press, Oxford, 278 p.Google Scholar
Cloudsley-Thompson, J.L. 1988. Evolution and Adaptation of Terrestrial Arthropods. Springer-Verlag, Berlin, 141 p.CrossRefGoogle Scholar
Cox, B. 1974. Little evidence for Palaeozoic arthropod and plant interaction. Nature, 249:615616.CrossRefGoogle Scholar
Crampton, G. 1916. The phylogenetic origin and the nature of the wings of insects according to the paranotal theory. Journal of the New York Entomological Society, 24:267301.Google Scholar
Crawford, C.S. 1972. Water relations in a desert millipede Orthoporus ornatus (Girard) (Spriostrepttidae). Comparative Biochemistry and Physiology, 42A:521535.CrossRefGoogle Scholar
Crepet, W.L. 1972. Investigations of North American cycadeoids: pollination mechanisms in Cycadeoidea. American Journal of Botany, 59:10481056.CrossRefGoogle Scholar
Crepet, W.L. 1974. Investigations of North American cycadeoids: the reproductive biology of Cycadeoidea. Palaeontographica, 148B:144169.Google Scholar
Crepet, W.L. 1979a. Some aspects of the pollination biology of Middle Eocene angiosperms. Review of Palaeobotany and Palynology, 27:213238.CrossRefGoogle Scholar
Crepet, W.L. 1979b. Insect pollination: a paleontological perspective. Bioscience, 29:102108.CrossRefGoogle Scholar
Crepet, W.L., and Friis, E.M. 1987. The evolution of insect pollination in angiosperms. p. 181201. In Friis, E.M., Chaloner, W.G. and Crane, P.R. (eds.), The Origins of Angiosperms and Their Biological Consequences. Cambridge University Press, Cambridge, U.K. Google Scholar
Crowson, R.A. 1981. The Biology of the Coleoptera. Academic Press, London, 802 p.Google Scholar
Curry, A. 1974. The spiracle structure and resistance to desiccation of centipedes. Symposium of the Zoological Society of London, 32:365382.Google Scholar
Delevoryas, T. 1968. Investigations of North American cycadeoids: structure, ontogeny and phylogenetic considerations of cones of Cycadeoidea. Paleontographica, 121B:122133.Google Scholar
Dimichele, W.A., Phillips, T.L., and Peppers, R.A. 1985. The influence of climate and depositional environment on the distirbution and evolution of Pennsylvanian coal-swamp plants. p. 223256. In Tiffney, B.H. (ed.), Geological Factors and the Evolution of Plants. Yale University Press, New Haven.Google Scholar
Dmitriev, V.J., and Zherikin, V.V. 1988. Changes in the diversity of insect families from data of first and last occurrences. p. 208215. In Ponomarenko, A.G. (ed.), The Mesozoic-Cenozoic Crisis in the Evolution of Insects. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Dorf, E. 1969. Paleobotanical evidence of Mesozoic and Cenozoic climatic changes. Proceedings of the First North American Paleontological Convention, D:323346.Google Scholar
Downes, J.A. 1971. The ecology of blood-sucking Diptera: an evolutionary perspective, p. 232258. In Fallis, A.M. (ed.), Ecology and Physiology of Parasites. University of Toronto Press, Toronto.Google Scholar
Downes, W.L. Jr. 1987. The impact of vertebrate predators on early arthropod evolution. Proceedings of the Entomological Society of Washington, 89:389406.Google Scholar
Downes, W.L. Jr., and Dahlem, G.A. 1988. Keys to the evolution of Diptera: role of Homoptera. Environmental Entomology, 16:847854.CrossRefGoogle Scholar
Dubinin, V.B. 1962. Class Acaromorpha: mites, or gnathosomic chelicerate arthropods, p. 447473. In Rohdendorf, B.B. (ed.), Fundamentals of Palaeontology. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Durden, C.J. 1978. A dasyleptid from the Permian of Kansas, Lepidodasypus sharovi, n.gen., n.sp. (Insecta: Thysanura: Monura). Texas Memorial Museum, Pearce-Sellards Series, 30:19 Google Scholar
Durden, C.J. 1984a. North American provincial insect ages for the continental last half of the Carboniferous and first half of the Permian. Neuviéme Congrés International de Stratigraphie et de Géologie du Carbonifère, 2:606612.Google Scholar
Durden, C.J. 1984b. Carboniferous and Permian entomology of western North America. Neuvième Congrès International de Stratigraphe et de Géologie du Carbonifère, 2:8189.Google Scholar
Durden, C.J. 1988. Hamilton insect fauna, p. 117124. In Mapes, G. and Mapes, R.H. (eds.), Regional Geology and Paleontology of Upper Paleozoic Hamilton Quarry Area in Southeastern Kansas. Geological Society of America, Lawrence, Kansas.Google Scholar
Edmunds, G.F. Jr. 1972. Biogeography and evolution in the Ephemeroptera. Annual Review of Entomology, 17:2142.CrossRefGoogle Scholar
Edney, E.B. 1968. Transition from water to land in isopod crustaceans. American Zoologist, 8:309326.CrossRefGoogle Scholar
Edney, E.B. 1977. Water Balance in Land Arthropods. Springer-Verlag, Berlin, 282 p.CrossRefGoogle Scholar
Edwards, C.A., Reichle, D.E., and Crossley, D.A. 1970. The role of soil invertebrates in turnover of organic matter and nutrients, p. 147172. In Reichle, D.E., (ed.), Analysis of Temperate Forest Ecosystems. Chapman and Hall, London.Google Scholar
Ewards, P.J., and Wratten, S.D. 1980. Ecology of insect-plant interactions. Studies in Biology, 121:160.Google Scholar
Ehrlich, P.R., and Raven, P.H. 1964. Butterflies and plants: a study in coevolution. Evolution, 18:586608.CrossRefGoogle Scholar
Erwin, T.L. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36:7475.Google Scholar
Faegri, K., and Van Der Pijl, L. 1981. The Principles of Pollination Ecology, Third revised edition. Pergamon Press, Oxford, 244 p.Google Scholar
Fisher, D.C. 1979. Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosurida), p. 379447. In Nitecki, M.H. (ed.), Mazon Creek Fossils. Academic Press, New York.CrossRefGoogle Scholar
Friend, J.A., and Richardson, A.M.M. 1986. Biology of terrestrial amphipods. Annual Review of Entomology, 31:2548.CrossRefGoogle Scholar
Gensel, P.G., and Andrews, H.N. 1984. Plant Life in the Devonian. Praeger, New York, 380 p.Google Scholar
Geyer, G., and Kelber, K.-P. 1987. Flugelreste und lebensspuren von Insekten aus dem Unteren Keuper Mainfrankens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 174:331355.Google Scholar
Ghilarov, M.S. 1956. Soil as the environment of the invertebrate transition from the aquatic to the terrestrial life. Sixième Congrès de la Science du Sol, 16C:307313.Google Scholar
Ghilarov, M.S. 1959. Adaptations of insects to soil dwelling. Proceedings of the International Congress of Entomology, 15:354357.Google Scholar
Ghilarov, M.S. 1960. Evolution of the insemination type in insects as the result of the transition from aquatic to terrestrial life in the course of phylogenesis. Symposium on the Ontogenetic Development of Insects (Prague), p. 5055. [In Russian with English summary.] Google Scholar
Gottsberger, G. 1988. The reproductive biology of primitive angiosperms. Taxon, 37:630643.CrossRefGoogle Scholar
Gould, S.J. 1981. Palaeontology plus ecology as palaeobiology, p. 295317. In May, R.M. (ed.), Theoretical Biology. Blackwell Publications, Boston.Google Scholar
Gray, J. 1985a. The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970-1984. Philosophical Transactions of the Royal Society of London, 309B:167192.CrossRefGoogle Scholar
Gray, J. 1985b. Early terrestrial ecosystems: the animal evidence. Geological Society of America Abstracts with Programs, 17:597.Google Scholar
Greenslade, P., and Whalley, P.E.S. 1986. The systematic position of Rhyniella praecursor Hirst & Maulik (Collembola), the earliest known hexapod, p. 319323. In Dallai, R. (ed.), Second International Seminar on the Apterygota. University of Siena, Siena.Google Scholar
Grogan, W.L., and Szadziewski, R. 1988. A new biting midge from Upper Cretaceous (Cenomanian) amber of New Jersey (Diptera: Ceratopogonidae). Journal of Paleontology, 62:808812.CrossRefGoogle Scholar
Gross, W.J. 1955. Aspects of osmotic regulation in crabs showing the terrestrial habit. American Naturalist, 89:205222.CrossRefGoogle Scholar
Hamilton, W.D. 1978. Evolution and diversity under bark. Symposium of the Royal Entomological Society of London, 9:154175.Google Scholar
Heinreich, B. 1975. Thermoregulation and flight energetics of desert insects, p. 9095. In Hadley, N.F. (ed.), Environmental Physiology of Desert Organisms. Dowden, Hutchinson and Ross Inc., Stroudsburg, PA.Google Scholar
Heinreich, B. 1980a. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. Journal of Experimental Biology, 85:6172.Google Scholar
Heinreich, B. 1980b. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. Journal of Experimental Biology, 85:7387.Google Scholar
Hennig, W. 1981. Insect Phylogeny. Academic Press, London, 514 p.Google Scholar
Hinton, H.E. 1948. On the origin and function of the pupal stage. Transactions of the Royal Entomological Society of London, 99:395409.CrossRefGoogle Scholar
Hinton, H.E. 1977. Enabling mechanisms. Proceedings of the International Congress of Entomology, 15:7183.Google Scholar
Hirst, S. 1923. On some arachnid remains from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire). Annals and Magazine of Natural History, (9), 12:455474.CrossRefGoogle Scholar
Hirst, S., and Maulik, S. 1926. On some arthropod remains from the Rhynie Chert (Old Red Sandstone). Geological Magazine, 63:6971.CrossRefGoogle Scholar
Hoese, B. 1982. Morphologie und Evolution der Lungen bei den terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea). Zoologischer Jahrbuch, Anatomie, 107:396422.Google Scholar
Hughes, N.F., and Smart, J. 1967. Plant-insect relationships in Palaeozoic and later time, p. 107117. In Harland, W.B., et al., (eds.), The Fossil Record. The Geological Society of London.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. 2 volumes. Academic Press, London, 337 p.Google Scholar
Jarzembowski, E.A. 1987. The occurrence and diverity of Coal Measure insects. Journal of the Geological Society of London, 144:507511.CrossRefGoogle Scholar
Jell, P.A., and Duncan, P.M. 1986. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Memoir of the Association of Australasian Palaeontologists, 3:111205.Google Scholar
Jeram, A.J. 1990. Book lungs in a Lower Carboniferous scorpion. Nature 343:360361.CrossRefGoogle Scholar
Jermy, T. 1984. Evolution of insect/host plant relationships. American Naturalist, 124:609630.CrossRefGoogle Scholar
Joosse, N.G. 1983. New developments in the ecology of Apterygota. Pedobiologia, 25:217234.Google Scholar
Kalugina, N.S., and Kovalev, V.G. 1985. Dipterous Insects from the Jurassic of Siberia. Academy of Sciences, Moscow, 197 p. [In Russian.] Google Scholar
Keilbach, R. 1982. Bibliographie und Liste der Arten tierischer Einschlusse in fossilen Harzen sowie ihrer Aufbewahrungsorte. Deutscher Entomologische Zeitschrift, 29(1/5):129491.CrossRefGoogle Scholar
Kevan, P.G., Chaloner, W.G., and Savile, D.B.O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology, 18:391417.Google Scholar
Kim, K.C. 1988. Evolutionary parallelism in Anoplura and eutherian mammals. Systematics Association Special Volume, 37:91114.Google Scholar
Kingsolver, J.G., and Koehl, M.A.R. 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39:488504.CrossRefGoogle ScholarPubMed
Kingsolver, J.G., and Koehl, M.A.R. 1989. Selective factors in the evolution of insect wings: response to Kukalová-Peck. Canadian Journal of Zoology, 67:785787.CrossRefGoogle Scholar
Kopaska-Merkel, E.C. 1988. Trace-fossil frequency modes and arthropod growth. Northeastern Geology, 10:300306.Google Scholar
Kozlov, M.V. 1988. Paleontology of lepidopterans and problems of the phylogeny of the Order Palilionida, p. 1669. In Ponomarenko, A.G. (ed.), The Mesozoic Biocoenotic Crisis in the Evolution of Insects. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Krassilov, V.A., and Rasnitsyn, A.P. 1982. A unique find: pollen in the intestine of Early Cretaceous sawflies. Paleontological Journal, 1982(4):8095.Google Scholar
Kristensen, N.P. 1981. Phylogeny of insect orders. Annual Review of Entomology, 26:135157.CrossRefGoogle Scholar
Kukalová-Peck, J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. Journal of Morphology, 156:53125.CrossRefGoogle Scholar
Kukalová-Peck, J. 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology, 61:16181669.CrossRefGoogle Scholar
Kukalová-Peck, J. 1987. New Carboniferous Diplura, Monura, Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta). Canadian Journal of Zoology, 65:23272345.CrossRefGoogle Scholar
Kukalová-Peck, J. 1988. Leg-based appendages of Carboniferous insects and their probable equivalents in recent embryos. Proceedings of the International Congress of Entomology, 18:72.Google Scholar
Labandeira, C.C. 1989. Use of fossil insects in paleoclimatologic reconstruction. Geological Society of America Abstracts with Programs, 21:A340.Google Scholar
Labandeira, C.C. 1990. Use of a Phenetic Analysis of Recent Hexapod Mouthparts for the Distribution of Hexapod Food Resource Guilds in the Fossil Record. Unpublished Ph.D. dissertation. University of Chicago. 1203 p.Google Scholar
Labandeira, C.C., Beall, B.S., and Hueber, F.M. 1988a. Description and systematic assignment of a Lower Devonian (Lower Emsian) insect from Gaspé Peninsula, Québec, Canada. Proceedings of the International Congress of Entomology (Vancouver), 18:45.Google Scholar
Labandeira, C.C., Beall, B.S., and Hueber, F.M. 1988b. Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science, 242:913916.CrossRefGoogle Scholar
Labandeira, C.C., Beall, B.S., and Hueber, F.M. 1988c. Structure and inferred life-habits of an early Devonian bristletail: what does the earliest insect tell us about the origin of insects? Geological Society of America Abstracts with Programs, 19:A47.Google Scholar
Ruiz, A. Lacasa, and Delcló, X. Martínez 1986. Meiatermes: nuevo género fósil de insecto isóptero (Hodotermitidae) de las calizas Necomienses del Montsec (Provincia de Lérida, España). Institut d'Estudis Llerdencs, Lleida, Spain, 67 p.Google Scholar
Lang, W.H. 1937. On the plant-remains from the Downtonian of England and Wales. Philosophical Transactions of the Royal Society of London, 224B:245291.CrossRefGoogle Scholar
Larew, H.G. 1986. The fossil gall record: a brief summary. Proceedings of the Entomological Society of Washington, 88: 385388.Google Scholar
Larsson, S.G. 1978. Baltic amber — a palaeobiological study. Entomonograph, 1:1192.Google Scholar
Levi, H.W. 1967. Adaptations of respiratory systems of spiders. Evolution, 21:571583.Google ScholarPubMed
Linck, O. 1949. Fossile Bohrgäe (Anobichnium simile n.g. n.sp.) an einem Keuperholz. Neues Jahrbuch fur Mineralogie, Geologie und Paläontologie Monatshefte, 1949:180185.Google Scholar
Lindsay, E. 1940. The biology of the silverfish Ctenolepisma longicaudata Esch. with particular reference to its feeding habits. Proceedings of the Royal Society of Victoria, 52(1):3583.Google Scholar
Little, C. 1983. The Colonisation of Land: Origins and Adaptations of Terrestrial Communities. Cambridge University Press, Cambridge, U.K., 290 p.Google Scholar
Little, C. 1989. Comparative physiology as a tool for investigating the evolutionary routes of animals on to land. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80:201208.CrossRefGoogle Scholar
Malyshev, S.I. 1968. Genesis of the Hymenoptera and the Phases of their Evolution. Methuen and Company, London, 319 p.Google Scholar
Mamaev, B.M. 1975. Evolution of Gall Forming Insects — Gall Midges. The British Library, Wetherby, U.K., 317 p.Google Scholar
May, R.M., (ed.). 1981. Theoretical Ecology. Blackwell Scientific Publications, Oxford, 489 p.Google Scholar
Mcalpine, J.F., and Martin, J.E.H. 1969. Canadian amber — a palaeontological treasure-chest. Canadian Entomologist, 101:819838.CrossRefGoogle Scholar
Mciver, S.B. 1975. Structure of cuticular mechanoreceptors of arthropods. Annual Review of Entomology, 20:381397.CrossRefGoogle ScholarPubMed
Messner, B. 1988. Sind die Insekten primäe oder secundäre Wasserbewohner? Deutsche Entomologische Zeitschrift, 35:355360.CrossRefGoogle Scholar
Michener, C.D., and Grimalid, D.A. 1988a. A Trigona from Late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates, 2917:110.Google Scholar
Michener, C.D., and Grimalid, D.A. 1988b. The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences, USA, 85:64246426.CrossRefGoogle Scholar
Mitter, C., Farrell, B., and Wiegmann, B. 1988. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? The American Naturalist, 132:107128.CrossRefGoogle Scholar
Moran, N.A. 1989. A 48-million-year-old aphid — host plant association and complex life cycle: biogeographic evidence. Science, 245:173175.CrossRefGoogle ScholarPubMed
Morritt, D. 1988. Osmoregulation in littoral and terrestrial talitroidean amphipods (Crustaea) from Britain. Journal of Experimental Marine Biology and Ecology, 123:7794.CrossRefGoogle Scholar
Müller, A.H. 1977. Uber interessante Insektenreste aus dem mitteleuropaischen Unterperm (Rotliegendes) mit allgemeinen bemerkungen zur Morphologie, Okologie und Phylogenetik. Biologische Rundschau, 15:4158.Google Scholar
Müller, A.H. 1982. Uber Hyponome fossiler und rezenter Insekten, erster Beitrag. Freiberger Forschungsheft, 366C:727.Google Scholar
Muñiz, R., and Barrera, A. 1969. Rhopalotria dimidiata Chevrolat, 1878: studio morfológico del adulto y descripcion de la larva (Ins. Col. Curcul.: Oxycoryninae). Revista de la Sociedad Mexicana de Historia Natural, 30:205222.Google Scholar
Nelson, C.R., and Tidwell, W.D. 1987. Brodioptera stricklani n.sp. (Megasecoptera: Brodiopteridae), a new fossil insect from the Upper Manning Canyon Shale Formation, Utah (Lowermost Namurian B). Psyche, 94:309316.CrossRefGoogle Scholar
Niklas, K.J. 1986. Large-scale changes in animal and plant terrestrial communities, p. 383405. In Raup, D.M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Niklas, K.J., Tiffney, B.H., and Knoll, A.H. 1985. Patterns in vascular land plant diversification: an analysis at the species level, p. 97128. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Norstog, K. 1987. Cycads and the origin of insect pollination. American Scientist, 75:270279.Google Scholar
Norton, R.A., Bonamo, P.M., Grierson, J.D., and Shear, W.A. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology, 62:259269.CrossRefGoogle Scholar
Paris, O.H., and Sikora, A. 1965. Radiotracer demonstration of isopod herbivory. Ecology, 46:729734.CrossRefGoogle Scholar
Parker, S. (ed.). 1982. Synoptic Classification of Living Organisms. McGraw-Hill Book Company, New York, 2:71726.Google Scholar
Plumstead, E.P. 1963. The influence of plants and environment on the developing animal life of Karoo times. South African Journal of Science, 59:147152.Google Scholar
Ponomarenko, A.G. 1969. Historical development of the Coleoptera-Archostemmata. Transactions of the Palaeontological Institute, 125:1239. [In Russian.] Google Scholar
Ponomarenko, A.G. 1976. A new insect from the Cretaceous of Transbaikalia, a possible parasite of pterosaurians. Paleontological Journal, 1976(3):339343.Google Scholar
Ponomarenko, A.G. (ed.). 1988. The Mesozoic-Cenozoic Crisis in the Evolution of Insects. Academy of Sciences, 239 p. [In Russian.] Google Scholar
Powers, L.W., and Bliss, D.E. 1983. Terrestrial adaptations. Biology of the Crustacea, 8:271333.Google Scholar
Pritykina, L.N. 1981. New Triassic dragonflies from Central Asia. Transactions of the Paleontological Institute, 183:542. [In Russian.] Google Scholar
Pruvost, P. 1919. Le faune continentale du terrain houiller du Nord de la France. Mémoires Carte Gèologie De France, 1919:1584.Google Scholar
Rasnitsyn, A.G. 1969. Origin and evolution of the lower Hymenoptera. Transactions of the Paleontological Institute, 123:1196. [In Russian.] Google Scholar
Rasnitsyn, A.G. 1983. First find of a moth from the Jurassic. Reports of the Academy of Sciences, USSR, 269:467471. [In Russian.] Google Scholar
Rasnitsyn, A.G. 1988. Problems in the global crisis of insect biocoenoses during the Middle Cretaceous Period. p. 191207. In Ponomarenko, A.G. (ed.), The Mesozoic-Cenozoic Crisis in the Evolution of Insects. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Raup, D.M. 1972. Taxonomic diversity during the Phanerozoic. Science, 117:10651071.CrossRefGoogle Scholar
Raup, D.M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206:217218.CrossRefGoogle ScholarPubMed
Remm, K.Y. 1976. Late Cretaceous biting midges (Diptera, Ceratopogonidae) from fossil resins of the Khatanga Depression. Paleontological Journal, 1976(3):344351.Google Scholar
Retallack, G.J., and Feakes, C.R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science, 235:6163.CrossRefGoogle ScholarPubMed
Rohdendorf, B.B., (ed.). 1968. Jurassic Insects of Karatau. Academy of Sciences, Moscow, 252 p. [In Russian].Google Scholar
Rohdendorf, B.B. 1974. Historical Development of Diptera. Translated by Moore, J. E. and Thiele, I.) University of Alberta Press, Edmonton, 360 p.Google Scholar
Rohdendorf, B.B., Bekker-Migdisova, E.E., Martynova, O.M., and Sharov, A.G. 1961. Paleozoic insects from the Kuznetsk Basin. Transactions of the Paleontological Institute, 85:1705. [In Russian.] Google Scholar
Rohdendorf, B.B., and Rasnitsyn, A.P. 1980. Historical development of the Class Insecta. Transactions of the Paleontological Institute, 175:1270. [In Russian.] Google Scholar
Rolfe, W.D.I. 1980. Early invertebrate terrestrial faunas, p. 117157. In Panchen, A.L., The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, New York.Google Scholar
Rolfe, W.D.I., Schram, F.R., Pacaud, G., Sotty, D., and Secretan, S. 1982. A remarkable Stephanian biota from Montceau-les-Mines, France. Journal of Paleontology, 56:426428.Google Scholar
Rothwell, G.W., and Scott, A.C. 1983. Coprolites within marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 41:227232.CrossRefGoogle Scholar
Rozefelds, A.C. 1988. Lepidoptera mines in Pachypteris leaves (Corystospermaceae: Pteridospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp Formation, North Queensland. Proceedings of the Royal Society of Queensland, 99:7781.Google Scholar
Rozefelds, A.C., and Sobbe, I. 1987. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa, 11:5157.CrossRefGoogle Scholar
Sanborne, M. 1981. Biology of Ithycerus novaeboracensis (Forster) (Coleoptera) and weevil phylogeny. Evolutionary Monographs, 4:180.Google Scholar
Schlee, D., and Glockner, W. 1978. Bernstein. Bernsteine und Bernsteine-Fossilen. Stuttgarter Beitrag zur Naturkunde, 8C:172.Google Scholar
Schram, F.R. 1979. The Mazon Creek biotas in the context of a Carboniferous faunal continuum, p. 159190. In Nitecki, M.H. (ed.), Mazon Creek Fossils. Academic Press, New York.CrossRefGoogle Scholar
Schram, F.R. 1986. Crustacea. Oxford University Press, New York, 606 p.Google Scholar
Scott, A.C. 1977. Coprolites containing plant material from the Carboniferous of Britain. Palaeontology, 20:5968.Google Scholar
Scott, A.C., and Taylor, T.N. 1983. Plant/animal interactions during the Upper Carboniferous. Botanical Review, 49:259307.CrossRefGoogle Scholar
Selden, P.A. 1989. Orb-web weaving spiders in the early Cretaceous. Nature, 340:711713.CrossRefGoogle Scholar
Selden, P.A., and Edwards, D. 1989. Colonisation of the land, p. 122152. In Allen, K.C. and Briggs, D.E.G. (eds.), Evolution and the Fossil Record. Belhaven Press, London.Google Scholar
Selden, P.A., and Jeram, A.J. 1989. Palaeophysiology of terrestrialisation in the Chelicerata. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80:303310.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. 1986. Phanerozoic overview of mass extinction, p. 277295. In Raup, D.M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Sepkoski, J.J. Jr., and Hulver, M.L. 1985. An atlas of Phanerozoic clade diversity diagrams, p. 1139. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Seymour, R.S. 1974. Convective and evaporative cooling in sawfly larvae. Journal of Insect Physiology, 20:24472457.CrossRefGoogle ScholarPubMed
Sharov, A.G. 1966. Basic Arthropodan Stock with Special Reference to Insects. Pergamon Press, Oxford, 271 p.Google Scholar
Sharov, A.G., 1971. Phylogeny of the Orthopteroidea. Israel Program for Scientific Translations, Jerusalem, 251 p.Google Scholar
Sharov, A.G., 1973. Morphological features and way of life of Palaeodictyoptera, p. 4963. In Bei-Benko, G.Y. (ed.), Twenty-fourth Annual Lecture in the Memory of N.A. Cholodkovkogo. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Shear, W.A. 1986. A fossil fauna of early terrestrial arthropods from the Givetian (upper Middle Devonian) of Gilboa, New York, USA. Acts of the Tenth International Congress of Arachnology, 1:387392.Google Scholar
Shear, W.A., and Bonamo, P.M. 1988. Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York state, USA, and the phylogeny of centiped orders. American Museum Novitates, 2927:130.Google Scholar
Shear, W.A., Bonamo, P.M., Grierson, J.D., Rolfe, W.D.I., Smith, E.L., and Norton, R.A. 1984. Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. Science, 224:492494.CrossRefGoogle ScholarPubMed
Shear, W.A., Palmer, J.M., Coddington, J.A., and Bonamo, P.M. 1989a. A Devonian spinneret: early evidence of spiders and silk use. Science, 246:479481.CrossRefGoogle Scholar
Shear, W.A., Schawaller, W., and Bonamo, P.M. 1989b. Record of Palaeozoic pseudoscorpions. Nature, 341:527529.CrossRefGoogle Scholar
Shear, W.A., Selden, P.A., Rolfe, W.D.I., Bonamo, P.M., and Grierson, J.D. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York, (Arachnida, Trigonotarbida). American Museum Novitates, 2901:174.Google Scholar
Sherwood-Pike, M.A., and Gray, J. 1985. Silurian fungal remains: probable records of the Class Ascomycetes. Lethaia, 18:120.CrossRefGoogle Scholar
Skalski, A.W. 1979. Records of oldest Lepidoptera. Nota Lepidologica, 2:6166.Google Scholar
Slifer, E.H., and Sekhon, S.S. 1970. Sense organs of a thysanuran, Ctenolepisma lineata pilifera, with special reference to those on the antennal flagellum (Thysanura, Lepismatidae). Journal of Morphology, 132:126.CrossRefGoogle Scholar
Smart, J., and Hughes, N.F. 1973. The insect and the plant: progressive palaeoecological integration, p. 143155. In Van Emden, H.F. (ed.), Insect/Plant Relationships. John Wiley and Sons, New York.Google Scholar
Smith, E.L. 1970. Biology and structure of some California bristletails and silverfish (Apterygota: Microcoryphia, Thysanura). Pan-Pacific Entomologist, 46:212225.Google Scholar
Southwood, T.R.E. 1984. Insect-plant adaptations, p. 138151. In CIBA Foundation Symposium 102, Origins and Development of Adaptation. Pitman Publishers, London.Google Scholar
Spaargaren, D.H. 1978. A comparison of the blood osmotic composition of various marine and brackish-water animals. Comparative Biochemistry and Physiology, 60:327333.CrossRefGoogle Scholar
Spicer, J.I., Moore, P.G., and Taylor, A.C. 1987. The physiological ecology of land invasion by the Talitridae (Crustacea: Amphipoda). Proceedings of the Royal Society of London, 232B:95124.CrossRefGoogle Scholar
Srivastava, A.K. 1987. Lower Barakar flora of Raniganj Coalfield and insect/plant relationship. The Palaeobotanist, 36:138142.Google Scholar
Stanley, S.M. 1973. An explanation for Cope's rule. Evolution, 27:126.CrossRefGoogle ScholarPubMed
Stewart, T.C., and Woodring, J.P. 1973. Anatomical and physiological studies of water balance in the millipedes Pachydesmus crassicutis Polydesmida) and Orthoporus texicolens (Spirobolida). Comparative Biochemistry and Physiology, 44A:735750.CrossRefGoogle Scholar
Størmer, L. 1969. Oldest known terrestrial arachnids. Science, 164:12761277.CrossRefGoogle Scholar
Størmer, L. 1976. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 5: Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods. Senckenbergiana lethaea, 57:87183.Google Scholar
Størmer, L. 1977. Arthropod invasion of land during Late Silurian and Devonian times. Science, 197:13621364.CrossRefGoogle ScholarPubMed
Strong, D.R., Lawton, J.H., and Southwood, R. 1984. Insects on Plants. Harvard University Press, Cambridge, MA, 313 p.Google Scholar
Swain, T. 1978. Plant-Animal Coevolution: a synoptic view of the Paleozoic and Mesozoic, p. 319. In Harborne, J.B. (ed.), Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London.Google Scholar
Tahvanainen, J., and Niemalä, P. 1987. Biogeographical and evolutionary aspects of insect herbivory. Annales Zoologica Fennici, 24:239247.Google Scholar
Taylor, T.N., and Millay, M.A. 1979. Pollination biology and reproduction in early seed plants. Review of Palaeobotany and Palynology, 27:329355.CrossRefGoogle Scholar
Thien, L.B., Bernhardt, P., Gibbs, G.W., Pellmyr, O., Bergström, G., Groth, I., and Mcpherson, G. 1985. The pollination of Zygogynum (Winteraceae) by a moth, Sabatinca (Micropterygidae): an ancient association? Science, 227:540543.CrossRefGoogle Scholar
Unwin, E.E. 1932. On the structure of the respiratory organs of the terrestrial Isopoda. Papers and Proceedings of the Royal Society of Tasmania, 1931:37104.Google Scholar
Van Amerom, H.W.J., and Boersma, M. 1971. A new find of the ichnofossil Phagophytichnus ekowskii Van Amerom. Geologie en Mijnbow, 50:667670.Google Scholar
Vandel, A. 1965. Sur 1′existence d'oniscoides trés primitifs menant une vie aquatique et sur polyphylétisme des isopodes terrestres. Annales de Spèlèologie, 20:489518.Google Scholar
Vermeij, G.J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, N.J., 527 p.Google Scholar
Vielmetter, W. 1958. Physiologie des Verhaltens zur Sonnenstrahlung bei dem Tagfalter Argynnis paphia L. I. Untersuchungen im Freiland. Journal of Insect Physiology, 2:1337.CrossRefGoogle Scholar
Vogel, B.R., and Durden, C.J. 1966. The occurrence of stigmata in a Carboniferous scorpion. Journal of Paleontology, 40:655658.Google Scholar
Waage, J.K. 1979. The evolution of insect/vertebrate associations. Biological Journal of the Linnean Society, 12:187224.CrossRefGoogle Scholar
Walker, M.V. 1938. Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proceedings of the United States National Museum, 85:137141.CrossRefGoogle Scholar
Warburg, M.R. 1968. Behavioral adaptations of terrestrial isopods. American Zoologist, 8:545559.CrossRefGoogle Scholar
Whalley, P.E.S. 1985. The systematics and paleogeography of the Lower Jurassic insects of Dorset, England. Bulletin of the British Museum (Natural History), Geology Series, 39(3):107189.Google Scholar
Whalley, P.E.S., 1986. A review of the current fossil evidence of Lepidoptera in the Mesozoic. Biological Journal of the Linnean Society, 28:253271.CrossRefGoogle Scholar
Whalley, P.E.S., and Jarzembowski, E.A. 1985. Fossil insects from the Lithographic Limestone of Montsech (late Jurassic-early Cretaceous), Lèrida Province, Spain. Bulletin of the British Museum (Natural History), Geology Series, 38(5):381412.CrossRefGoogle Scholar
Whittaker, R.H. 1977. Evolution of species diversity in land communities. Evolutionary Biology, 10:167.Google Scholar
Wildish, D.J. 1988. Ecology and natural history of aquatic Talitroidea. Canadian Journal of Zoology, 66:23402359.CrossRefGoogle Scholar
Willemstein, S.C. 1987. An evolutionary basis for pollination ecology. Leiden Botanical Series, 10:1425.Google Scholar
Wilson, E.O. 1975. The Insect Societies. Harvard University Press, Cambridge, MA, 548 p.Google Scholar
Wilson, E.O. 1988. The current state of biological diversity, p. 318. In Wilson, E.O. (ed.), Biodiversity. National Academy Press, Washington, D.C. Google Scholar
Wootton, R.J. 1976. The fossil record and insect flight. Symposium of the Royal Entomological Society of London, 7:235254.Google Scholar
Wootton, R.J., 1988. The historical ecology of aquatic insects: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:477492.CrossRefGoogle Scholar
Zessin, W. 1987. Variabilität, Merkmalswandel und Phylogenie der Elcanidae im Jungpaläozoikum und Mesozoikum und die Phylogenie der Ensifera (Orthopteroida, Ensifera). Deutsche Entomologische Zeitschrift, 34:176.CrossRefGoogle Scholar
Zeuner, F.E. 1939. Fossil Orthoptera Ensifera. British Museum of Natural History, London, 321 p.Google Scholar
Zherikin, V.V., and Sukacheva, I.D. 1973. On Cretaceous insect bearing amber (retinite) from northern Siberia, p. 348. In Bei-Benko, G.Y. (ed.), Twenty-fourth Annual Lecture in Memory of N.A. Kholodkovskogo. Academy of Sciences, Moscow. [In Russian.] Google Scholar
Zhiyan, Z., and Bole, Z. 1989. A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 59:133143.CrossRefGoogle Scholar
Zwölfer, H. 1978. Mechanismen und Ergebnisse der Co-Evolution von phytophagen und entomophagen Insekten und hoheren Pflanzen. Sonderband naturwissenscaften Verein im Hamburg, 2:750.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between 17th July 2017 - 25th February 2021. This data will be updated every 24 hours.