Skip to main content Accessibility help

Seed remains of common millet from the 4th (Mongolia) and 15th (Hungary) centuries: AFLP, SSR and mtDNA sequence recoveries

  • G. Gyulai (a1) (a2), M. Humphreys (a2), R. Lagler (a1), Z. Szabo (a1), Z. Toth (a1), A. Bittsanszky (a1), F. Gyulai (a3) and L. Heszky (a1)...


Seed remains of common millet (Panicum miliaceum L.) were excavated from sites of ad 4th-century Darhan (Mongolia), and ad 15th-century Budapest (Hungary). Because the 15th-century medieval grains looked so intact, a germination test was carried out under aseptic conditions, which resulted in swelling of the grains but no cell proliferation or germination. Ancient DNA (aDNA) was extracted from the aseptic grains; analysed for amplified fragment length polymorphisms (AFLP), simple sequence repeats (SSR) and mitochondrial DNA (mtDNA); and compared with the modern millet cultivar ‘Topaz’. AFLP analysis revealed that extensive DNA degradation had occurred in the 4th-century ancient millet, resulting in only 2 (1.2%) AFLP fragments (98.8% degradation) amplified by MseCAA–EcoAGT, compared to the 15th-century medieval millet, with 158 (40%) fragments (60% degradation), and modern millet cultivar ‘Topaz’ with 264 fragments (100%). EcoAGT–MseCAA was found to be the most effective selective-primer combination for the analysis of medieval and modern millet. Eight AFLP fragments were sequenced after re-amplification and cloning. Microsatellite (SSR) analysis at the nuclear gln4, sh1, rps28 and rps15 loci revealed one SNP (single nucleotide polymorphism) at the 29th position (A→G) of rps28 locus, compared to modern millet. An mtDNA fragment (MboI), amplified at the 18S–5S ribosomal DNA (rDNA) locus in the medieval millet, showed no molecular changes compared to modern millet. The results underline the significance of aDNA extraction and analysis of excavated seeds for comparative analysis and molecular reconstruction of ancient and extinct plant genotypes.


Corresponding author

*Correspondence: Email:


Hide All
Al-Janabi, S.M., McClelland, M., Petersen, C. and Sobral, B.W.S. (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theoretical and Applied Genetics 88, 933944.
Allaby, R.G. and Brown, T.A. (2003) AFLP data and the origins of domesticated crops. Genome 46, 448453.
Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell 9, 10551066.
Biss, P., Freeland, J., Silvertown, J., McConway, K. and Lutman, P. (2003) Successful amplification of rice chloroplast microsatellites from century-old grass samples from the Park Grass experiment. Plant Molecular Biology Reporter 21, 249257.
Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R., Cavalli-Sforza, L.L. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455457.
Bromham, L. and Penny, D. (2003) The modern molecular clock. Nature Reviews Genetics 4, 216224.
Brown, T.A. (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Philosophical Transactions of the Royal Society of London, Series B 354, 8998.
Cheng, S., Fockler, C., Barnes, W.M. and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proceedings of the National Academy of Sciences, USA 91, 56955699.
Chin, E.C.L., Senior, M.L., Shu, H. and Smith, J.S.C. (1996) Maize simple repetitive DNA sequences: Abundance and allele variation. Genome 39, 866873.
Colosi, J.C. and Schaal, B.A. (1997) Wild proso millet (Panicum miliaceum) is genetically variable and distinct from crop varieties of proso millet. Weed Science 45, 509518.
Cooper, A. and Poinar, H.N. (2000) Ancient DNA: Do it right or not at all. Science 289, 1139
Cooper, A., Lalueza-Fox, C., Anderson, S., Rambaut, A., Austin, J. and Ward, R. (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704707.
Cresswell, A., Sackville-Hamilton, N.R., Roy, A.K. and Viegas, B.M.F. (2001) Use of AFLP markers to assess genetic diversity of Lolium species from Portugal. Molecular Ecology 10, 229241.
Deguilloux, M.-F., Pemonge, M.-H. and Petit, R.J. (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proceedings of the Royal Society of London, Series B 269, 10391046.
Gorman, C.F. (1969) Hoabinhian: a pebble-tool complex with early plant associations in Southeast Asia. Science 163, 671673.
Gugerli, F., Parducci, L. and Petit, R.J. (2005) Ancient plant DNA: review and prospects. New Phytologist 166, 409418.
Gyulai, F. (2000) Seed and fruit collections of the middle European plant species. Godollo, Hungary, St. Stephanus University.
Gyulai, G., Mester, Z., Kiss, J., Szeman, L., Heszky, L. and Idnurm, A. (2003) Somaclone breeding of reed canarygrass (Phalaris arundinaceaL). Grass and Forage Science 58, 210215.
Gyulai, G., Humphreys, M., Bittsánszky, A., Skot, K., Kiss, J., Skot, L., Gullner, G., Heywood, S., Szabo, Z., Lovatt, A., Radimszky, L., Roderick, H., Rennenberg, H., Abberton, M., Kőmíves, T. and Heszky, L. (2005) AFLP analysis and improved phytoextraction capacity of transgenic gsh I-poplar clones (Populus canescens L.) in vitro. Zeitschrift für Naturforschung 60, 300306.
Harlan, J.R. (1971) Agricultural origins: centers and noncenters. Science 174, 468473.
Ho, P.-T. (1977) The indigenous origins of Chinese agriculture. pp. 413418. in Reed, C.A. (Ed.) Origins of agriculture. Paris, Mouton Publishers.
Hofreiter, M., Jaenicke, V., Serre, D., von Haeseler, A., Pääbo, S. (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research 29, 47934799.
Keng, H. (1974) Economic plants of ancient north China as mentioned in Shih Ching (Book of Poetry). Economic Botany 28, 391410.
Lagler, R., Gyulai, G., Humphreys, M., Szabo, Z., Horvath, L., Bittsanszky, A., Kiss, J., Holly, L. and Heszky, L. (2005) Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica 146, 7785.
Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked-segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, USA 88, 98289832.
Nyekhelyi, B.D. (2003) Monumenta historica Budapestinensia XII. Hungary, Historical Museum of Budapest.
Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L. and Hofreiter, M. (2004) Genetic analyses from ancient DNA. Annual Review of Genetics 38, 645679.
Petit, R.J., Demesure, B. and Dumolin, S. (1998) cpDNA and mtDNA primers in plants. 256261. in Karp, A.;, Isaac, P.G.;, Ingram, D.S.Molecular tools for screening biodiversity. London, Chapman & Hall.
Poinar, H.N. and Stankiewicz, B.A. (1999) Protein preservation and DNA retrieval from ancient tissues. Proceedings of the National Academy of Sciences, USA 96, 84268431.
Poinar, H.N., Kuch, M., McDonald, G., Martin, P., Pääbo, S. (2003) Nuclear gene sequences from a late Pleistocene sloth coprolite. Current Biology 12, 11501152.
Priestley, D.A. (1986) Seed aging: Implication for seed storage and persistence in the soil. Ithaca, New York. Cornell University Press.
Raniello, R. and Procaccini, G. (2002) Ancient DNA in the seagrass Posidonia oceanica. Marine Ecology – Progress Series 227, 269273.
Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics 149, 20072023.
Saltonstall, K. (2003) Microsatellite variation within and among North American lineages of Phragmites australis. Molecular Ecology 12, 16891702.
Schermann, Sz. (1966) Magismeret, Vols I and II (Seed Atlas, in Hungarian). Budapest, Akadémiai Kiado.
Skøt, L., Hamilton, N.R.S., Mizen, S., Chorlton, K.H. and Thomas, I.D. (2002) Molecular genecology of temperature response in Lolium perenne: 2. Association of AFLP markers with ecogeography. Molecular Ecology 11, 18651876.
Smith, P.M. (1976) Minor crops. pp. 301324. in Simmonds, N.W.Evolution of crop plants. London, Longman.
Sun, G., Kaushal, R., Pal, P., Wolujewicz, M., Smelser, D., Cheng, H., Lu, M., Chakraborty, R., Jin, L. and Deka, R. (2005) Whole-genome amplification: relative efficiencies of the current methods. Legal Medicine 7, 279286.
Szabo, Z., Gyulai, G., Humphreys, M., Horváth, L., Bittsánszky, A., Lagler, R. and Heszky, L. (2005) Genetic variation of melon ( C. melo ) compared to an extinct landrace from the Middle Ages (Hungary) I. rDNA, SSR and SNP analysis of 47 cultivars. Euphytica 146, 8794.
Threadgold, J. and Brown, T.A. (2003) Degradation of DNA in artificially charred wheat seeds. Journal of Archaeological Science 30, 10671076.
Toth, G., Gaspari, Z. and Jurka, J. (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967981.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de, Lee T., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.
Walters, T.W. (1989) Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae. Economic Botany 43, 297313.
Willerslev, E., Hansen, A.J., Binladen, J., Brand, T.B., Gilbert, M.T.P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D.A. and Cooper, A. (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791795.
Yang, H. (1997) Ancient DNA from Pleistocene fossils: preservation, recovery, and utility of ancient genetic information for quaternary research. Quaternary Science Reviews 16, 11451161.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed