Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T21:41:18.908Z Has data issue: false hasContentIssue false

Seed banking in the columnar cactus Stenocereus stellatus: distribution, density and longevity of seeds

Published online by Cambridge University Press:  17 October 2014

Ricardo Álvarez-Espino*
Affiliation:
UBIPRO, FES-Iztacala, UNAM. Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla54090, Edo. de México, México
Héctor Godínez-Álvarez
Affiliation:
UBIPRO, FES-Iztacala, UNAM. Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla54090, Edo. de México, México
Rodolfo De la Torre-Almaráz
Affiliation:
UBIPRO, FES-Iztacala, UNAM. Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla54090, Edo. de México, México
*
*Correspondence E-mail: r.alvarez.espino@gmail.com

Abstract

The soil seed bank is the reserve of viable seeds found in the soil. This reserve contributes to plant population persistence in unpredictable environments; thus, determining its presence is basic to understanding recruitment patterns and population dynamics. Studies of soil seed banks in the Cactaceae are scarce, although these plants are ecologically dominant in American arid and semi-arid environments. Most studies have inferred the presence of seed banks by analysing morphological seed traits or germination of seeds stored in the laboratory for different periods of time. Few studies have determined their presence through evaluation of distribution, density and longevity of seeds in the field. To fill this information gap, we determined the existence of, and studied, the soil seed bank of Stenocereus stellatus, a columnar cactus endemic to central Mexico. This study reports the evaluation of these characteristics in the field and discusses whether this species forms a soil seed bank. We found a higher number of seeds under shrubs than in areas lacking vegetation. Recently dispersed seeds did not germinate because they have primary dormancy. This dormancy was broken after 6 months of burial in the soil. Seeds buried for 10 months entered secondary dormancy and they were not viable at 24 months, probably because of pathogen attack. Considering dormancy and seed longevity, we suggest that S. stellatus has the potential to form a short-term persistent seed bank. However, this should be confirmed by conducting studies on other S. stellatus populations throughout their geographical distribution.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, M., Soriano, A. and Sala, O. (1992) Competition and facilitation in the recruitment of seedlings in Patagonian steppe. Functional Ecology 6, 6670.Google Scholar
Aikio, S., Ranta, E., Kaitala, V. and Lundberg, P. (2002) Seed bank in annuals: competition between banker and non-banker morphs. Journal of Theoretical Biology 217, 341349.Google Scholar
Arias-Cóyotl, E., Stoner, K.E. and Casas, A. (2006) Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated populations in La Mixteca Baja, central Mexico. American Journal of Botany 93, 16751683.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.Google Scholar
Bowers, J.E. (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank? Journal of Arid Environments 45, 197205.CrossRefGoogle Scholar
Bowers, J.E. (2005) New evidence for persistent or transient seed banks in three Sonoran Desert cacti. The Southwestern Naturalist 50, 482487.Google Scholar
Brown, J.S. and Venable, D.L. (1991) Life history evolution of seed-bank annuals in response to seed predation. Evolutionary Ecology 5, 1229.Google Scholar
Cano-Salgado, A., Zavala-Hurtado, J.A., Orozco-Segovia, A., Valverde-Valdés, M.T. and Pérez-Rodríguez, P. (2012) Composición y abundancia del banco de semillas en una región semiárida del tropico mexicano: patrones de variación espacial y temporal. Revista Mexicana de Biodiversidad 83, 437446.Google Scholar
Casas, A., Caballero, J., Valiente-Banuet, A., Soriano, J.A. and Dávila, P. (1999) Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in Central Mexico. American Journal of Botany 86, 522533.Google Scholar
Chambers, J.C. and MacMahon, J.A. (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology and Systematics 25, 263292.CrossRefGoogle Scholar
Chee-Sanford, J.C., Williams, M.M., Davis, A.S. and Sims, G.K. (2006) Do microorganisms influence seed-bank dynamics? Weed Science 54, 575587.Google Scholar
Cheib, A.L. and Garcia, Q.S. (2012) Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Science Research 22, 4553.Google Scholar
Crist, T.O. and Friese, C.F. (1993) The impact of fungi on soil seeds: implications for plants and granivores in a semiarid shrub-steppe. Ecology 74, 22312239.Google Scholar
De la Barrera, E. and Nobel, P.S. (2003) Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis . Journal of Arid Environments 53, 297306.Google Scholar
Delgado-Sánchez, P., Ortega-Amaro, M.A., Jiménez-Bremont, J.F. and Flores, J. (2011) Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biology 13, 154159.Google Scholar
de Viana, M.L., Sühring, S. and Manly, B.F.J. (2000) Application of randomization methods to study the association of Thrichocereus pasacana (Cactaceae) with potential nurse plants. Plant Ecology 156, 193197.CrossRefGoogle Scholar
Flores-Martínez, A., Manzanero, G.I., Rojas-Aréchiga, M., Mandujano, M.C. and Golubov, J. (2008) Seed age germination responses and seedling survival of an endangered cactus that inhabits cliffs. Natural Areas Journal 28, 5157.CrossRefGoogle Scholar
García-Suárez, F., Carreto-Montoya, L., Cárdenas-Navarro, R., Díaz-Pérez, J. and López-Gómez, R. (2007) Pitaya (Stenocereus stellatus) fruit growth is associated to wet season in Mexican dry tropic. Phyton 76, 1926.Google Scholar
Godínez-Alvarez, H., Valverde, T. and Ortega-Baes, P. (2003) Demographic trends in the Cactaceae. The Botanical Review 69, 173203.Google Scholar
Godínez-Alvarez, H., Ríos-Casanova, L. and Pérez, F. (2005) Characteristics of seedling establishment of Stenocereus stellatus (Cactaceae) in the Tehuacán Valley, Mexico. The Southwestern Naturalist 50, 375380.Google Scholar
Gosling, P.G. (2003) Viability testing. pp. 445481 in Smith, R.D.; Dickie, J.B.; Linington, S.H.; Pritchard, H.W.; Probert, R.J. (Eds) Seed conservation: Turning science into practice. Kew, UK, Royal Botanic Gardens.Google Scholar
Holland, J.N. and Molina-Freaner, F. (2013) Hierarchical effects of rainfall, nurse plants, granivory and seed banks on cactus recruitment. Journal of Vegetation Science 24, 10531061.Google Scholar
Hulme, P.E. (1998) Post-dispersal seed predation: consequences for plant demography and evolution. Perspectives in Plant Ecology, Evolution and Systematics 1, 3246.CrossRefGoogle Scholar
Jayasuriya, K.G., Qijetunga, A.S., Baskin, J.M. and Baskin, C.C. (2013) Seed dormancy and storage behaviour in tropical Fabaceae: a study of 100 species from Sri Lanka. Seed Science Research 23, 257269.Google Scholar
Li, F.-R. (2008) Presence of shrubs influences the spatial pattern of soil seed banks in desert herbaceous vegetation. Journal of Vegetation Science 19, 537548.Google Scholar
Marone, L., Rossi, B.E. and Lopez De Casenave, J. (1998) Granivore impact on soil-seed reserves in the central Monte desert, Argentina. Functional Ecology 12, 640645.Google Scholar
Montiel, S. and Montaña, C. (2003) Seed bank dynamics of the desert cactus Opuntia rastrera in two habitats from the Chihuahuan Desert. Plant Ecology 166, 241248.Google Scholar
Moreira, B., Tormo, J., Estrelles, E. and Pausas, J.G. (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105, 627635.Google Scholar
Mull, J.F. and MacMahon, J.A. (1996) Factors determining the spatial variability of seed densities in a shrub-steppe ecosystem: the role of harvester ants. Journal of Arid Environments 32, 181192.Google Scholar
Olvera-Carrillo, Y., Márquez-Guzmán, J., Sánchez-Coronado, M.E., Barradas, V.L., Rincón, E. and Orozco-Segovia, A. (2009) Effect of burial on the germination of Opuntia tomentosa's (Cactaceae, Opuntioideae) seeds. Journal of Arid Environments 73, 421427.Google Scholar
Ordoñez, C. (2008) Características ecológicas y fisiológicas del banco de semillas de Polaskia chende . Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.Google Scholar
Ortega-Baes, P. and Godínez-Alvarez, H. (2006) Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation 15, 817827.Google Scholar
Raeder, U. and Broda, P. (1985) Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1, 1720.Google Scholar
Reichman, O.J. (1984) Spatial and temporal variation of seed distributions in Sonoran desert soils. Journal of Biogeography 11, 111.Google Scholar
Rojas-Aréchiga, M. and Batis, A. (2001) Las semillas de cactáceas… ¿forman bancos en el suelo? Cactáceas y Suculentas Mexicanas 46, 7682.Google Scholar
Rojas-Aréchiga, M., Casas, A. and Vázquez-Yanes, C. (2001) Seed germination of wild and cultivated Stenocereus stellatus (Cactaceae) from the Tehuacán-Cuicatlán Valley, Central México. Journal of Arid Environments 49, 279287.Google Scholar
Sánchez-Coronado, M.E., Márquez-Guzmán, J., Rosas-Moreno, J., Vidal-Gaona, G., Villegas, M., Espinosa-Matías, S., Olvera-Carrillo, Y. and Orozco-Segovia, A. (2011) Mycoflora in exhumed seeds of Opuntia tomentosa and its possible role in seed germination. Applied and Environmental Soil Science 2011, 18.CrossRefGoogle Scholar
Silvius, K.M. (1995) Avian consumers of Cardon fruits (Stenocereus griseus: Cactaceae) on Margarita Island, Venezuela. Biotropica 27, 96105.Google Scholar
Thompson, K. (1993) Persistence in soil. pp. 199202 in Hendry, G.A.F.; Grime, J.P. (Eds) Methods in comparative plant ecology: A laboratory manual. London, Chapman & Hall.Google Scholar
Thompson, K. (2000) The functional ecology of soil seed banks. pp. 215235 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities (2nd edition). Wallingford, UK, CABI Publishing.Google Scholar
Valiente-Banuet, A., Solís, L., Dávila, P., Arizmendi, M.C., Silva, P.C., Ortega-Ramírez, J., Treviño, C.J., Rangel-Landa, S. and Casas, A. (2009) Guía de la vegetación del Valle de Tehuacán-Cuicatlán. México, Universidad Nacional Autónoma de México.Google Scholar
Venable, D.L. (2007) Bet hedging in a guild of desert annuals. Ecology 88, 10861090.Google Scholar
Walck, J.L., Baskin, J.M., Baskin, C.C. and Hidayati, S.N. (2005) Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research 15, 189196.Google Scholar
Whitford, W.G. (2002) Ecology of desert systems. London, Academic Press.Google Scholar
Supplementary material: File

Álvarez-Espino Supplementary Material

Supplementary Material

Download Álvarez-Espino Supplementary Material(File)
File 25.1 KB