Skip to main content Accessibility help

Missing pieces in protein deposition and mobilization inside legume seed storage vacuoles: calcium and magnesium ions

  • Cláudia N. Santos (a1), Marta M. Alves (a1), Isabel T. Bento (a1) and Ricardo B. Ferreira (a1) (a2)


During the maturation of dicotyledonous seeds, organic carbon, nitrogen and sulphur are stored in protein storage vacuoles (PSVs) as storage globulins. Several studies point to the coexistence of storage proteins with proteases responsible for their degradation inside PSVs. Different mechanisms have been proposed to explain why there is no proteolysis during this period. Protein aggregation to form large supramolecular structures resistant to proteolytic attack could be the reason. However, during germination, and particularly following its completion, the globulin aggregates must undergo disintegration to allow protease attack for protein reserve mobilization. Based on the well-described concentration-dependent ability of Ca2+ and Mg2+ to promote in vitro aggregation and disaggregation of globulins, we explored a possible role for these alkaline earth cations in globulin packaging and mobilization. Ca2+ and Mg2+ measurements in purified PSVs [6.37 μmol and 43.9 μmol g− 1 dry weight (DW) of cotyledons, respectively] showed the presence of these two alkaline earth cations within this compartment. To our knowledge, this is the first time that Ca2+ and Mg2+ have been quantified in purified PSVs from Lupinus albus seeds. Considering the importance of these two alkaline earth cations inside PSVs, which represent 14.6% and 60.7% of the total seed Mg2+and Ca2+, respectively, globulin aggregation and disaggregation profiles were assayed using experimental conditions closer to those that are physiologically present (proportion of Ca2+ and Mg2+, and acidic pH). Based on: (1) the high in vivo abundance of Ca2+ and Mg2+ inside PSVs; and (2) globulin aggregation and disaggregation profiles, together with structural and physiological evidence already reported in the literature, an important physiological role for Ca2+ and Mg2+ in globulin packaging and mobilization inside PSVs is suggested.


Corresponding author

*Correspondence Email:


Hide All
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) The protein data bank. Nucleic Acids Research 28, 235242.
Britton, H. and Robinson, R. (1931) Universal buffer solutions and the dissociation constant of veronal. Journal of the Chemical Society CXCVIII, 14561462.
Bucking, H., Kuhn, A.J., Schroder, W.H.andHeyser, W. (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? Journal of Experimental Botany 53, 16591669.
Clarkson, D. (1980) The mineral nutrition in higher plants. Annual Review of Plant Physiology 31, 239298.
Crouch, M.L. and Sussex, I.M. (1981) Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153, 6474.
DeLano, W.L. (2002) The PyMOL molecular graphics system. San Carlos, California, DeLano Scientific.
Dumas, B., Freyssinet, G. and Pallett, K.E. (1995) Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiology 107, 10911096.
Duranti, M., Scarafoni, A., Di Cataldo, A. and Sessa, F. (2001) Interaction of metal ions with lupin seed conglutin gamma. Phytochemistry 56, 529533.
Einhoff, W., Fleischmann, G., Freier, T., Kummer, H. and Rudiger, H. (1986) Interactions between lectins and other components of leguminous protein bodies. Biological Chemistry Hoppe–Seyler 367, 1525.
Ferreira, R., Melo, T. and Teixeira, A. (1995) Catabolism of the seed storage proteins from Lupinus albus: fate of globulins during germination and seedling growth. Functional Plant Biology 22, 373381.
Ferreira, R.B., Franco, E. and Teixeira, A.R. (1999) Calcium- and magnesium-dependent aggregation of legume seed storage proteins. Journal of Agricultural and Food Chemistry 47, 30093015.
Ferreira, R.B., Freitas, R.L. and Teixeira, A.R. (2003) Self-aggregation of legume seed storage proteins inside the protein storage vacuoles is electrostatic in nature, rather than lectin-mediated. FEBS Letters 534, 106110.
Franceschi, V. (1989) Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148, 130137.
Franceschi, V.R. and Nakata, P.A. (2005) Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56, 4171.
Franco, E., Ferreira, R.B. and Teixeira, A.R. (1997) Utilization of an improved methodology to isolate Lupinus albus conglutins in the study of their sedimentation coefficients. Journal of Agricultural and Food Chemistry 45, 39083913.
Fukuda, T., Maruyama, N., Salleh, M.R., Mikami, B. and Utsumi, S. (2008) Characterization and crystallography of recombinant 7S globulins of Adzuki bean and structure–function relationships with 7S globulins of various crops. Journal of Agricultural and Food Chemistry 56, 41454153.
García, M.C., Torre, M., Marina, M.L., Laborda, F. and Rodriquez, A.R. (1997) Composition and characterization of soybean and related products. Critical Reviews in Food Science and Nutrition 37, 361391.
Greiner, R. (2002) Purification and characterization of three phytases from germinated lupin seeds (Lupinus albus var. amiga). Journal of Agricultural and Food Chemistry 50, 68586864.
Gruis, D., Schulze, J. and Jung, R. (2004) Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. The Plant Cell 16, 270290.
He, F., Huang, F., Wilson, K.A. and Tan-Wilson, A. (2007) Protein storage vacuole acidification as a control of storage protein mobilization in soybeans. Journal of Experimental Botany 58, 10591070.
Ilarslan, H., Palmer, R. and Horner, H. (2001) Calcium oxalate crystals in developing seeds of soybean. Annals of Botany 88, 243257.
Jain, E., Bairoch, A., Duvaud, S., Phan, I., Redaschi, N., Suzek, B.E., Martin, M.J., Mcgarvey, P. and Gasteiger, E. (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136.
Jiang, L. and Rogers, J.C. (2002) Compartmentation of proteins in the protein storage vacuole: a compound organelle in plant cells. Advances in Botanical Research 35, 140170.
Jiang, L., Phillips, T.E., Rogers, S.W. and Rogers, J.C. (2000) Biogenesis of the protein storage vacuole crystalloid. Journal of Cell Biology 150, 755770.
Jin, T., Albillos, S.M., Guo, F., Howard, A., Fu, T.J., Kothary, M.H. and Zhang, Y.Z. (2009) Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin. Journal of Agricultural and Food Chemistry 57, 86438651.
Kanauchi, M., Milet, J. and Bamforth, C. (2009) Oxalate and oxalate oxidase in malt. Journal of the Institute of Brewing 115, 232237.
Khan, S., Verma, G. and Sharma, S. (2010) A novel Ca2+-activated protease from germinating Vigna radiata seeds and its role in storage protein mobilization. Journal of Plant Physiology 167, 855861.
Lott, J.N.A. and Buttrose, M.S. (1978) Thin sectioning, freeze fracturing, energy dispersive X-ray analysis, and chemical analysis in the study of inclusions in seed protein bodies: almond, Brazil nut, and quandong. Canadian Journal of Botany 56, 20502061.
Magni, C., Scarafoni, A., Herndl, A., Sessa, F., Prinsi, B., Espen, L. and Duranti, M. (2007) Combined 2D electrophoretic approaches for the study of white lupin mature seed storage proteome. Phytochemistry 68, 9971007.
Maruyama, Y., Maruyama, N., Mikami, B. and Utsumi, S. (2004) Structure of the core region of the soybean β-conglycinin α' subunit. Acta Crystallographica Section D Biological Crystallography 60, 289297.
Muntz, K. (2007) Protein dynamics and proteolysis in plant vacuoles. Journal of Experimental Botany 58, 23912407.
Muntz, K., Belozersky, M.A., Dunaevsky, Y.E., Schlereth, A. and Tiedemann, J. (2001) Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. Journal of Experimental Botany 52, 17411752.
Okubo, K., Myers, D.V. and Iacobucci, G.A. (1976) Binding of phytic acid to glycinin. Cereal Chemistry 53, 513524.
Otegui, M.S., Herder, R., Schulze, J., Jung, R. and Staehelin, L.A. (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. The Plant Cell 18, 25672581.
Ramagli, L.S. (1999) Quantifying protein in 2-D PAGE solubilization buffers. Methods in Molecular Biology 112, 99103.
Regvar, M., Eichert, D., Kaulich, B., Gianoncelli, A., Pongrac, P., Vogel-Mikus, K. and Kreft, I. (2011) New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. Journal of Experimental Botany 62, 39293939.
Rendle, A.B. (1888) On the development of the aleurone-grains in the lupin. Annals of Botany 2, 161167.
Sharon, N. and Lis, H. (1990) Legume lectins – a large family of homologous proteins. FASEB Journal 4, 31983208.
Shewry, P.R. and Casey, R. (1999) Seed proteins. pp. 110in (Eds) Seed proteins. Dordrecht, The Netherlands, Kluwer Academic Publishers.
Shutov, A.D., Baumlein, H., Blattner, F.R. and Muntz, K. (2003) Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. Journal of Experimental Botany 54, 16451654.
Tan-Wilson, A.L. and Wilson, K.A. (2012) Mobilization of seed protein reserves. Physiologia Plantarum 145, 140153.
Trugo, L.C., Donangelo, C.M., Duarte, Y.A. and Tavares, C.L. (1993) Phytic acid and selected mineral composition of seed from wild species and cultivated varieties of lupin. Food Chemistry 47, 391394.
Weber, E. and Neumann, D. (1980) Protein bodies, storage organelles in plant seeds. Biochemie und Physiologie der Pflanzen 175, 279306.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed