Skip to main content Accessibility help
×
Home

Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis

  • N. W. Pammenter (a1), Valerie Greggains (a2), J. I. Kioko (a1), J. Wesley-Smith (a1), Patricia Berjak (a1) and W. E. Finch-Savage (a3)...

Abstract

The drying rate of whole seeds of Ekebergia capensis (Meliaceae) was shown to influence the response to desiccation, with rapidly dried seeds surviving to lower water contents. Short-term rapid drying (to water contents higher than those leading to viability loss) actually increased the rate of germination. The form of the time course of decline of axis water content varied with drying rate; slow drying could be described by an exponential function, whereas with rapid drying initial water loss was faster than predicted by an exponential function. These observations suggest that slow drying brought about homogeneous dehydration and that the rapid drying was uneven across the tissue. This raised the possibility that the different responses to dehydration were a function of different distributions of water in the axis tissue under the two drying regimes. However, ultrastructural observations indicated that different deleterious processes may be occurring under the different drying treatments. It was tentatively concluded that a major cause of viability loss in slowly dried material was likely to be a consequence of aqueous-based processes leading to considerable membrane degradation. Uneven distribution of tissue water could not be rejected as a contributory cause of the survival of rapidly dried seeds to low bulk water contents. The differential response to dehydration at different drying rates implies that it is not possible to determine a ‘critical water content’ for viability loss by recalcitrant seeds.

Copyright

Corresponding author

*Fax: +27 31 260 2029 E-mail: pammente@biology.und.ac.za

References

Hide All
Beckett, R.P. (1997) Pressure-volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany 79, 145152.
Berjak, P. and Pammenter, N.W. (1997) Progress in the understanding and manipulation of desiccation-sensitive (recalcitrant) seeds. pp 689703in Ellis, R.M.; Black, M.; Murdoch, A.J.; Hong, T.D. (Eds) Basic and applied aspects of seed biology: Proceedings of the Fifth International Workshop on Seeds, Reading, 1995, Kluwer Academic Publishers.
Berjak, P., Farrant, J.M. and Pammenter, N.W. (1989) The basis of recalcitrant seed behaviour. pp 89108in Taylorson, R.B. (Ed.) Recent advances in the development and germination of seeds. New York, Plenum Press.
Berjak, P., Vertucci, C.W. and Pammenter, N.W. (1993) Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Science Research 3, 155166.
Berjak, P., Farrant, J.M., Mycock, D.J. and Pammenter, N.W. (1990) Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Science and Technology 18, 297310.
Berjak, P., Mycock, D.J., Wesley-Smith, J., Dumet, D. and Watt, P. (1996) Strategies for in vitro conservation of hydrated germplasm. pp 1952in Normah, M.N.; Narimah, M.K.; Clyde, M.M. (Eds) In vitro conservation of plant genetic resources. Kuala Lumpur, Malaysia, Percetakan Watan Sdn.Bhd.
Chin, H.F. and Roberts, E.H. (1980) Recalcitrant crop seeds. Kuala Lumpur, Malaysia, Tropical Press SDN.BHD.
Corbineau, F., Salmen Espindola, L., Vinel, D. and Côme, D. (1997) Cellular and metabolic events associated with dehydration of recalcitrant Araucaria angustifolia embryos. pp 715721in Ellis, R.M.; Black, M.; Murdoch, A.J.; Hong, T.D. (Eds) Basic and applied aspects of seed biology: Proceedings of the Fifth International Workshop on Seeds, Reading, 1995, Kluwer Academic Publishers.
Crowe, J.H., Crowe, L.M., Carpenter, J.F. and Aurell Wistrom, C. (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochemical Journal 242, 110.
Farrant, J.M., Berjak, P. and Pammenter, N.W. (1985) The effect of drying rate on viability retention of propagules of Avicennia marina. South African Journal of Botany 51, 432438.
Farrant, J.M., Pammenter, N.W., Berjak, P. and Walters, C. (1997) Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Science Research 7, 135144.
Finch-Savage, W.E. (1992) Embryo water status and survival in the recalcitrant species Quercus robur L.: evidence for a critical moisture content. Journal of Experimental Botany 43, 663669.
Finch-Savage, W.E. (1996) The rôle of developmental studies in research on recalcitrant and intermediate seeds. pp 8397in Poulsen, K., Stubsgaard, F. and Ouédraogo, A.-S. (Eds) Improved methods for the handling and storage of intermediate/recalcitrant tropical forest tree seeds. Rome, IPGRI.
Finch-Savage, W.E. and Blake, P.S. (1994) Indeterminate development in desiccation-sensitive seeds of Quercus robur L. Seed Science Research 4, 127133.
Fu, J.R., Zhang, B.Z., Wang, X.P., Qiao, Y.Z. and Huang, X.L. (1990) Physiological studies on desiccation, wet storage and cryopreservation of recalcitrant seeds of three fruit species and their excised embryonic axes. Seed Science and Technology 18, 743754.
Leprince, O., Deltour, R. and Hendry, G.A.F. (1993) Impaired NADPH metabolism during loss of desiccation tolerance in germinating Zea mays seeds. pp 393397in Côme, D.; Corbineau, F. (Eds) Fourth international workshop on seeds. Basic and applied aspects of seed biology. Paris, ASFIS.
Leprince, O., Deltour, R., Thorpe, P.C., Atherton, N.M. and Hendry, G.A.F. (1990) The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.) seeds. New Phytologist 116, 573580.
Normah, M.N., Chin, H.F. and Hor, Y.L. (1986) Desiccation and cryostorage of embryonic axes of Hevea brasiliensis Muell.-Arg. Pertanika 9, 299303.
Pammenter, N.W., Vertucci, C.W. and Berjak, P. (1991) Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiology 96, 10931098.
Pammenter, N.W., Vertucci, C.W. and Berjak, P. (1993) Responses to dehydration in relation to non-freezable water in desiccation-sensitive and -tolerant seeds. pp 867872in Côme, D.; Corbineau, F. (Eds) Fourth international workshop on seeds. Basic and applied aspects of seed biology. Paris, ASFIS.
Pritchard, H.W. (1991) Water potential and embryonic axis viability in recalcitrant seeds of Quercus rubra. Annals of Botany 67, 4349.
Roberts, E.H. (1973) Predicting the storage life of seeds. Seed Science and Technology 1, 499514.
Salmen Espindola, L., Noin, M., Corbineau, F. and Côme, D. (1994) Cellular and metabolic damage induced by desiccation in recalcitrant Araucaria angustifolia embryos. Seed Science Research 4, 193201.
Vertucci, C.W. (1990) Calorimetric studies on the state of water in seed tissues. Biophysical Journal 58, 14631471.
Vertucci, C.W. (1993) Towards a unified hypothesis of seed aging. pp 739746in Côme, D.; Corbineau, F. (Eds) Fourth international workshop on seeds. Basic and applied aspects of seed biology. Paris, ASFIS.
Vertucci, C.W. and Farrant, J.M. (1995) Acquisition and loss of desiccation tolerance. pp 237271in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Basel, Hong Kong, Marcel Dekker Inc.

Keywords

Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis

  • N. W. Pammenter (a1), Valerie Greggains (a2), J. I. Kioko (a1), J. Wesley-Smith (a1), Patricia Berjak (a1) and W. E. Finch-Savage (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed