Skip to main content Accessibility help

Desiccation tolerance in relation to soluble sugar contents in seeds of ten coffee (Coffea L.) species

  • Nathalie Chabrillange (a1), Stéphane Dussert (a1), Florent Engelmann (a2), Sylvie Doulbeau (a1) and Serge Hamon (a1)...


Large differences in seed desiccation sensitivity have been observed previously among ten coffee species (Coffea arabica, C. brevipes, C. canephora, C. eugenioides, C. humilis, C. liberica, C. pocsii, C. pseudo-zanguebariae, C. sessiliflora and C.stenophylla). Of these species, C. liberica and C. humilis were the most sensitive to desiccation and C. pseudozanguebariae the most tolerant. A study was carried out using the same seed lots to investigate if these differences in desiccation tolerance could be correlated with differences in soluble sugar content. Soluble sugars were extracted from dry seeds and analysed using high performance liquid chromatography. The seed monosaccharide (glucose and fructose) content was very low (1.5 to 2 mg g-1dry weight [dw]) in all species studied. The sucrose content ranged from 33 mg g-1dw in C. liberica seeds to 89 mg g-1dw in seeds of C. pocsii. Raffinose was detected in the seeds of only five species (C.arabica, C.brevipes, C.humilis, C.sessiliflora, C.stenophylla), among which only three species (C.arabica, C.sessiliflora and C.brevipes) also contained stachyose. Both raffinose and stachyose were present in very low quantities (0.3–1.4 mg g-1dw and 0.1–0.7 mg g-1dw, respectively). Verbascose was never detected. No significant relationship was found between seed desiccation sensitivity and: (i) the sugar content; (ii) the presence/absence of oligosaccharides; and (iii) the oligosaccharide:sucrose ratio.


Corresponding author

*Correspondence Fax : (33)


Hide All
Clifford, M.N. (1985) Chemical and physical aspects of green coffee and coffee products. pp. 305374in Clifford, M.N.; Willson, K.C. (Eds) Coffee, botany, biochemistry and production of beans and beverage. Westport, CT, AVI Publishing.
Crowe, J.H., Hoekstra, F.A. and Crowe, L.M. (1992) Anhydrobiosis. Annual Review of Physiology 54, 579599.
Dussert, S., Chabrillange, N., Engelmann, F., Anthony, F. and Hamon, S. (1997) Cryopreservation of coffee (Coffea arabica L.) seeds: importance of the precooling temperature. Cryo-Letters 18, 269276.
Dussert, S., Chabrillange, N., Engelmann, F. and Hamon, S. (1999) Quantitative estimation of seed desiccation sensitivity using a quantal response model: application to nine species of the genus Coffea L. Seed Science Research 9, 135144.
Eira, M.T.S., Walters, C., Caldas, L.S., Fazuoli, L.C., Sampaio, J.B. and Dias, M.C. (1999a) Tolerance of Coffea spp. seeds to desiccation and low temperature. Revista Brasileira de Fisiologia Vegetal 11, 97105.
Eira, M.T.S., Walters, C. and Caldas, L.S. (1999b) Water sorption properties in Coffea spp. seeds and embryos. Seed Science Research 9, 321330.
Hong, T.D. and Ellis, R.H. (1995) Interspecific variation in seed storage behaviour within two genera–Coffea and Citrus. Seed Science and Technology 23, 165181.
Ky, C.L., Doulbeau, S., Guyot, B., Akaffou, S., Charrier, A., Hamon, S., Louarn, J. and Noirot, M. (2000) Inheritance of coffee bean sucrose content in the interspecific cross: Coffea pseudozanguebariae x Coffea liberica. Plant Breedings 119, 165168.
Leopold, A.C., Sun, W.Q. and Bernal-Lugo, I. (1994) The glassy state in seeds: analysis and function. Seed Science Research 4, 267274.
Lin, T.P. and Huang, N.H. (1994) The relationship between carbohydrate composition of some tree seeds and their longevity. Journal of Experimental Botany 45, 12891294.
Pammenter, N.W. and Berjak, P. (1999) A review of recalcitrant seed physiology in relation to desiccation tolerance mechanisms. Seed Science Research 9, 1337.
Steadman, K.J., Pritchard, H.W. and Dey, P.M. (1996) Tissue-specific soluble sugars in seeds as indicator of storage category. Annals of Botany 77, 667674.
Trugo, L.C. (1988) Carbohydrates. pp. 83114in Clarke, R.J.; Macrae, R. (Eds) Coffee. Vol. 1. Chemistry. London, Elsevier Applied Science.
Vertucci, C.W. and Farrant, J.M. (1995) Acquisition and loss of desiccation tolerance. pp. 237271in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker Inc.
Williams, R.J. and Leopold, A.C. (1989) The glassy state in corn embryos. Plant Physiology 89, 977981.


Desiccation tolerance in relation to soluble sugar contents in seeds of ten coffee (Coffea L.) species

  • Nathalie Chabrillange (a1), Stéphane Dussert (a1), Florent Engelmann (a2), Sylvie Doulbeau (a1) and Serge Hamon (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed