Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-12T14:16:05.947Z Has data issue: false hasContentIssue false

Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1

Published online by Cambridge University Press:  16 January 2015

Bas J.W. Dekkers*
Affiliation:
Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
Leónie Bentsink
Affiliation:
Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
*
*Correspondence E-mail: bas.dekkers@wur.nl

Abstract

Physiological dormancy has been described as a physiological inhibiting mechanism that prevents radicle emergence. It can be caused by the embryo (embryo dormancy) as well as by the structures that cover the embryo. One of its functions is to time plant growth and reproduction to the most optimal season and therefore, in nature, dormancy is an important adaptive trait that is under selective pressure. Dormancy is a complex trait that is affected by many loci, as well as by an intricate web of plant hormone interactions. Moreover, it is strongly affected by a multitude of environmental factors. Its induction, maintenance, cycling and loss come down to the central paradigm, which is the balance between two key hormonal regulators, i.e. the plant hormone abscisic acid (ABA), which is required for dormancy induction, and gibberellins (GA), which are required for germination. In this review we will summarize recent developments in dormancy research (mainly) in the model plant Arabidopsis thaliana, focusing on two key players for dormancy induction, i.e. the plant hormone ABA and the DELAY OF GERMINATION 1 (DOG1) gene. We will address the role of ABA and DOG1 in relation to various aspects of seed dormancy, i.e. induction during seed maturation, loss during dry seed afterripening, the rehydrated state (including dormancy cycling) and the switch to germination.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C. and Truong, H.N. (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell and Environment 28, 500512.Google Scholar
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P. and Jullien, M. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana . Planta 219, 479488.Google Scholar
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H. and Koornneef, M. (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana . Genetics 164, 711729.Google Scholar
Ashikawa, I., Abe, F. and Nakamura, S. (2010) Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Science 179, 536542.Google Scholar
Barrero, J.M., Millar, A.A., Griffiths, J., Czechowski, T., Scheible, W.R., Udvardi, M., Reid, J.B., Ross, J.J., Jacobsen, J.V. and Gubler, F. (2010) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant Journal 61, 611622.Google Scholar
Baskin, C.C. and Baskin, J.M. (2014) Seeds: Ecology, biogeography, and, evolution of dormancy and germination (2nd edition). San Diego, USA, Academic Press.Google Scholar
Baskin, J.M. and Baskin, C.C. (1983) Seasonal-changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Botanical Gazette 144, 540543.Google Scholar
Bassel, G.W., Lan, H., Glaab, E., Gibbs, D.J., Gerjets, T., Krasnogor, N., Bonner, A.J., Holdsworth, M.J. and Provart, N.J. (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences, USA 108, 97099714.Google Scholar
Bazin, J., Langlade, N., Vincourt, P., Arribat, S., Balzergue, S., El-Maarouf-Bouteau, H. and Bailly, C. (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23, 21962208.Google Scholar
Bentsink, L., Jowett, J., Hanhart, C.J. and Koornneef, M. (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 1704217047.Google Scholar
Bentsink, L., Soppe, W. and Koornneef, M. (2007) Genetic aspects of seed dormancy. pp. 113132 in Bradford, K.J.; Nonogaki, H. (Eds) Annual plant reviews volume 27: Seed development, dormancy and germination. Oxford, UK, Blackwell Publishing.CrossRefGoogle Scholar
Bentsink, L., Hanson, J., Hanhart, C.J., Blankestijn-de Vries, H., Coltrane, C., Keizer, P., El-Lithy, M., Alonso-Blanco, C., de Andres, M.T., Reymond, M., van Eeuwijk, F., Smeekens, S. and Koornneef, M. (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proceedings of the National Academy of Sciences, USA 107, 42644269.Google Scholar
Bethke, P.C., Libourel, I.G., Aoyama, N., Chung, Y.Y., Still, D.W. and Jones, R.L. (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143, 11731188.Google Scholar
Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell 9, 10551066.Google Scholar
Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M and Nonogaki, H. (2013) Seeds: Physiology of development, germination and dormancy. New York, Springer.CrossRefGoogle Scholar
Biddulph, T.B., Mares, D.J., Plummer, J.A. and Setter, T.L. (2005) Drought and high temperature increases preharvest sprouting tolerance in a genotype without grain dormancy. Euphytica 143, 277283.Google Scholar
Bouwmeester, H.J. and Karssen, C.M. (1993a) Annual changes in dormancy and germination in seeds of Sisymbrium officinale (L.) Scop. New Phytologist 124, 179191.Google Scholar
Bouwmeester, H.J. and Karssen, C.M. (1993b) Seasonal periodicity in germination of seeds of Chenopodium album L. Annals of Botany 72, 463473.CrossRefGoogle Scholar
Bowman, J.L. and Floyd, S.K. (2008) Patterning and polarity in seed plant shoots. Annual Review of Plant Biology 59, 6788.Google Scholar
Braybrook, S.A., Stone, S.L., Park, S., Bui, A.Q., Le, B.H., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences, USA 103, 34683473.Google Scholar
Cadman, C.S., Toorop, P.E., Hilhorst, H.W. and Finch-Savage, W.E. (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant Journal 46, 805822.Google Scholar
Cai, H.W. and Morishima, H. (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics 100, 840846.CrossRefGoogle Scholar
Cai, Z., Liu, J., Wang, H., Yang, C., Chen, Y., Li, Y., Pan, S., Dong, R., Tang, G., Barajas-Lopez, J.D., Fujii, H. and Wang, X. (2014) GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup iii SnRK2s in Arabidopsis. Proceedings of the National Academy of Sciences, USA 111, 96519656.Google Scholar
Cao, D.N., Hussain, A., Cheng, H. and Peng, J.R. (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223, 105113.Google Scholar
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L. and Holdsworth, M.J. (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal 53, 214224.Google Scholar
Chiang, G.C.K., Barua, D., Kramer, E.M., Amasino, R.M. and Donohue, K. (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana . Proceedings of the National Academy of Sciences, USA 106, 1166111666.Google Scholar
Chiang, G.C., Bartsch, M., Barua, D., Nakabayashi, K., Debieu, M., Kronholm, I., Koornneef, M., Soppe, W.J., Donohue, K. and De Meaux, J. (2011) DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana . Molecular Ecology 20, 33363349.Google Scholar
Clarke, F.R., Clarke, J.M., DePauw, R.M., Fernandez, M.R., Fox, S., Gilbert, J., Humphreys, G., Knox, R.E., McCaig, T.N., Procunier, D., Sissons, M. and Somers, D. (2005) Strategic approach to mitigating weather induced defects of wheat quality. Euphytica 143, 285290.Google Scholar
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. and McCourt, P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 12391241.CrossRefGoogle ScholarPubMed
Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. (2010) Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61, 651679.CrossRefGoogle ScholarPubMed
Debeaujon, I. and Koornneef, M. (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology 122, 415424.Google Scholar
Debeaujon, I., Leon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122, 403414.Google Scholar
Derkx, M.P.M. and Karssen, C.M. (1993) Variability in light gibberellin and nitrate requirement of Arabidopsis thaliana seeds due to harvest time and conditions of dry storage. Journal of Plant Physiology 141, 574582.CrossRefGoogle Scholar
Derkx, M.P.M. and Karssen, C.M. (1994) Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Annals of Botany 73, 129136.Google Scholar
Ding, Z.J., Yan, J.Y., Li, G.X., Wu, Z.C., Zhang, S.Q. and Zheng, S.J. (2014) WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant Journal 79, 810823.Google Scholar
Donohue, K. (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society of London B Biological Science 364, 10591074.CrossRefGoogle ScholarPubMed
Durham, S. (2003) Scientists offer suggestions to combat pecan vivipary. Southeast Farm Press . Available at http://southeastfarmpress.com/scientists-offer-suggestions-combat-pecan-vivipary (accessed accessed 4 June 2014).Google Scholar
El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D. and Bailly, C. (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers in Plant Science 4, 77.Google Scholar
Evenari, M. (1984) Seed physiology – its history from antiquity to the beginning of the 20th-century. Botanical Review 50, 119142.CrossRefGoogle Scholar
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research 1, 7584.Google Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, UK, Cambridge University Press.Google Scholar
Feurtado, J.A. and Kermode, A.R. (2007) A merging of paths: abscisic acid and hormonal cross-talk in the control of seed dormancy maintenance and alleviation. pp. 176223 in Bradford, K.J.; Nonogaki, H. (Eds) Annual plant reviews volume 27: Seed development, dormancy and germination. Oxford, UK, Blackwell Publishing.Google Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.Google Scholar
Finch-Savage, W.E., Cadman, C.S., Toorop, P.E., Lynn, J.R. and Hilhorst, H.W. (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant Journal 51, 6078.Google Scholar
Finkelstein, R. (2013) Abscisic acid synthesis and response. The Arabidopsis Book 11, e0166.Google Scholar
Finkelstein, R.R. and Lynch, T.J. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599609.Google Scholar
Finkelstein, R., Gampala, S.S.L., Lynch, T.J., Thomas, T.L. and Rock, C.D. (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Molecular Biology 59, 253267.Google Scholar
Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415.Google Scholar
Footitt, S., Douterelo-Soler, I., Clay, H. and Finch-Savage, W.E. (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences, USA 108, 2023620241.Google Scholar
Footitt, S., Huang, Z., Clay, H.A., Mead, A. and Finch-Savage, W.E. (2013) Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant Journal 74, 10031015.Google Scholar
Footitt, S., Clay, H.A., Dent, K. and Finch-Savage, W.E. (2014) Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. New Phytologist 202, 929939.Google Scholar
Fowler, S. and Thomashow, M.F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 16751690.CrossRefGoogle Scholar
Fujii, H. and Zhu, J.K. (2009) An autophosphorylation site of the protein kinase SOS2 is important for salt tolerance in Arabidopsis. Molecular Plant 2, 183190.Google Scholar
Fujii, H., Verslues, P.E. and Zhu, J.K. (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485494.Google Scholar
Gao, F.Y., Ren, G.J., Lu, X.J., Sun, S.X., Li, H.J., Gao, Y.M., Luo, H., Yan, W.G. and Zhang, Y.Z. (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breeding 127, 268273.Google Scholar
Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M. and McCourt, P. (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7, 373385.Google Scholar
Geneve, R.L. (1998) Seed dormancy in commercial vegetable and flower species. Seed Technology 20, 236250.Google Scholar
Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman, H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 12511261.Google Scholar
Graeber, K., Linkies, A., Muller, K., Wunchova, A., Rott, A. and Leubner-Metzger, G. (2010) Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the brassicaceae DOG1 genes. Plant Molecular Biology 73, 6787.CrossRefGoogle ScholarPubMed
Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G. and Soppe, W.J.J. (2012) Molecular mechanisms of seed dormancy. Plant Cell and Environment 35, 17691786.Google Scholar
Graeber, K., Voegele, A., Buttner-Mainik, A., Sperber, K., Mummenhoff, K. and Leubner-Metzger, G. (2013) Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION 1 genes. Plant Physiology 161, 19031917.Google Scholar
Graeber, K., Linkies, A., Steinbrecher, T., Mummenhoff, K., Tarkowska, D., Tureckova, V., Ignatz, M., Sperber, K., Voegele, A., de Jong, H., Urbanova, T., Strnad, M. and Leubner-Metzger, G. (2014) DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences, USA 34, E3571E3580.Google Scholar
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210, 279285.Google Scholar
Groot, S.P.C. and Karssen, C.M. (1992) Dormancy and germination of abscisic acid-deficient tomato seeds – studies with the sitiens mutant. Plant Physiology 99, 952958.CrossRefGoogle ScholarPubMed
Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8, 183187.Google Scholar
Han, F., Ullrich, S.E., Clancy, J.A. and Romagosa, I. (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science 143, 113118.Google Scholar
He, Y.H. and Gan, S.S. (2004) A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Molecular Biology 54, 19.Google Scholar
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. 1. Primary dormancy. Seed Science Research 5, 6173.Google Scholar
Hilhorst, H.W.M. and Downie, B. (1996) Primary dormancy in tomato (Lycopersicon esculentum cv. Moneymaker): studies with the sitiens mutant. Journal of Experimental Botany 47, 8997.Google Scholar
Hilhorst, H.W.M. and Karssen, C.M. (1988) Dual effect of light on the gibberellin-stimulated and nitrate-stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana . Plant Physiology 86, 591597.Google Scholar
Holdsworth, M.J., Bentsink, L. and Soppe, W.J. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.Google Scholar
Holman, T.J., Jones, P.D., Russell, L., Medhurst, A., Tomas, S.U., Talloji, P., Marquez, J., Schmuths, H., Tung, S.A., Taylor, I., Footitt, S., Bachmair, A., Theodoulou, F.L. and Holdsworth, M.J. (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 45494554.Google Scholar
Huang, X., Schmitt, J., Dorn, L., Griffith, C., Effgen, S., Takao, S., Koornneef, M. and Donohue, K. (2010) The earliest stages of adaptation in an experimental plant population: strong selection on QTLs for seed dormancy. Molecular Ecology 19, 13351351.Google Scholar
Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D. and Schroeder, J.I. (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes and Development 24, 16951708.Google Scholar
Jia, H.Y., Suzuki, M. and McCarty, D.R. (2014) Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdisciplinary Reviews - Developmental Biology 3, 135145.Google Scholar
Karssen, C.M. and Lacka, E. (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana . pp. 315323 in Bopp, M. (Ed.) Plant growth substances 1985. Berlin, Springer-Verlag.Google Scholar
Kendall, S. and Penfield, S. (2012) Maternal and zygotic temperature signalling in the control of seed dormancy and germination. Seed Science Research 22, S23S29.Google Scholar
Kendall, S.L., Hellwege, A., Marriot, P., Whalley, C., Graham, I.A. and Penfield, S. (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23, 25682580.Google Scholar
Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24, 319344.Google Scholar
Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y. and Choi, G. (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20, 12601277.Google Scholar
Kim, W., Lee, Y., Park, J., Lee, N. and Choi, G. (2013) HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant and Cell Physiology 54, 555572.CrossRefGoogle ScholarPubMed
Koornneef, M. and Karssen, C.M. (1994) Seed dormancy and germination. pp. 313334 in Meyerowitz, E.M.; Somerville, C. (Eds) Arabidopsis. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.Google Scholar
Koornneef, M. and van der Veen, J.H. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 58, 257263.Google Scholar
Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L. and Karssen, C.M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 61, 385393.Google Scholar
Koornneef, M., Reuling, G. and Karssen, C.M. (1984) The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana . Physiologia Plantarum 61, 377383.Google Scholar
Kronholm, I., Pico, F.X., Alonso-Blanco, C., Goudet, J. and de Meaux, J. (2012) Genetic basis of adaptation in Arabidopsis thaliana: Local adaptation at the seed dormancy QTL DOG1 . Evolution 66, 22872302.Google Scholar
Kucera, B., Cohn, M.A. and Leubner-Metzger, G. (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307.Google Scholar
Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H. and Schroeder, J.I. (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of ABH1 on AtPP2CA mRNA. Plant Physiology 140, 127139.Google Scholar
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: Key enzymes in ABA catabolism. EMBO Journal 23, 16471656.Google Scholar
Laserna, M.P., Sanchez, R.A. and Botto, J.F. (2008) Light-related loci controlling seed germination in Ler ×  Cvi and Bay-0 ×  Sha recombinant inbred-line populations of Arabidopsis thaliana . Annals of Botany 102, 631642.Google Scholar
Lee, K.P., Piskurewicz, U., Tureckova, V., Strnad, M. and Lopez-Molina, L. (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proceedings of the National Academy of Sciences, USA 107, 1910819113.Google Scholar
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E. and Marion-Poll, A. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant Journal 45, 309319.Google Scholar
Leon-Kloosterziel, K.M., Gil, M.A., Ruijs, G.J., Jacobsen, S.E., Olszewski, N.E., Schwartz, S.H., Zeevaart, J.A. and Koornneef, M. (1996a) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant Journal 10, 655661.Google Scholar
Leon-Kloosterziel, K.M., van de Bunt, G.A., Zeevaart, J.A. and Koornneef, M. (1996b) Arabidopsis mutants with a reduced seed dormancy. Plant Physiology 110, 233240.Google Scholar
Leung, J., Bouvierdurand, M., Morris, P.C., Guerrier, D., Chefdor, F. and Giraudat, J. (1994) Arabidopsis ABA response gene ABI1 – features of a calcium-modulated protein phosphatase. Science 264, 14481452.Google Scholar
Leung, J., Merlot, S. and Giraudat, J. (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759771.Google Scholar
Leymarie, J., Vitkauskaite, G., Hoang, H.H., Gendreau, E., Chazoule, V., Meimoun, P., Corbineau, F., El-Maarouf-Bouteau, H. and Bailly, C. (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant and Cell Physiology 53, 96106.Google Scholar
Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T. and Cheng, W.H. (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology 143, 745758.Google Scholar
Lin, S.Y., Sasaki, T. and Yano, M. (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theoretical and Applied Genetics 96, 9971003.CrossRefGoogle Scholar
Liu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.Q., Luan, S., Li, J. and He, Z.H. (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Science, USA 110, 1548515490.Google Scholar
Liu, Y., Koornneef, M. and Soppe, W.J. (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19, 433444.Google Scholar
Liu, Y.X., Geyer, R., van Zanten, M., Carles, A., Li, Y., Horold, A., van Nocker, S. and Soppe, W.J.J. (2011) Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 6(7), e22241.Google Scholar
Lopez-Molina, L. and Chua, N.H. (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana . Plant and Cell Physiology 41, 541547.Google Scholar
Lotan, T., Ohto, M., Yee, K.M., West, M.A., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1998) Arabidopsis LEAFY COTYLEDON 1 is sufficient to induce embryo development in vegetative cells. Cell 93, 11951205.Google Scholar
Luerssen, H., Kirik, V., Herrmann, P. and Misera, S. (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana . Plant Journal 15, 755764.Google Scholar
Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 10641068.Google Scholar
Martinez-Andujar, C., Martin, R.C. and Nonogaki, H. (2012) Seed traits and genes important for translational biology – highlights from recent discoveries. Plant and Cell Physiology 53, 515.Google Scholar
Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.P., Kamiya, Y., Nambara, E. and Truong, H.N. (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology 149, 949960.Google Scholar
McCarty, D.R. (1995) Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology 46, 7193.Google Scholar
McCarty, D.R., Carson, C.B., Stinard, P.S. and Robertson, D.S. (1989) Molecular analysis of VIVIPAROUS 1 – an abscisic acid-insensitive mutant of maize. Plant Cell 1, 523532.Google Scholar
McKibbin, R.S., Wilkinson, M.D., Bailey, P.C., Flintham, J.E., Andrew, L.M., Lazzeri, P.A., Gale, M.D., Lenton, J.R. and Holdsworth, M.J. (2002) Transcripts of VP-1 homeologues are misspliced in modern wheat and ancestral species. Proceedings of the National Academy of Sciences, USA 99, 1020310208.Google Scholar
Meimoun, P., Mordret, E., Langlade, N.B., Balzergue, S., Arribat, S., Bailly, C. and El-Maarouf-Bouteau, H. (2014) Is gene transcription involved in seed dry after-ripening? PLoS One 9(1), e86442.Google Scholar
Meng, P.H., Macquet, A., Loudet, O., Marion-Poll, A. and North, H.M. (2008) Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci. Molecular Plant 1, 145154.CrossRefGoogle ScholarPubMed
Miyakawa, T., Fujita, Y., Yamaguchi-Shinozaki, K. and Tanokura, M. (2013) Structure and function of abscisic acid receptors. Trends in Plant Science 18, 259266.Google Scholar
Molitor, A.M., Bu, Z.Y., Yu, Y. and Shen, W.H. (2014) Arabidopsis al PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genetics 10(1), e1004091.Google Scholar
Moller, B. and Weijers, D. (2009) Auxin control of embryo patterning. Cold Spring Harbor Perspectives in Biology 1, a001545.Google Scholar
Monke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H.P., Baumlein, H. and Conrad, U. (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219, 158166.Google Scholar
Mosquna, A., Peterson, F.C., Park, S.Y., Lozano-Juste, J., Volkman, B.F. and Cutler, S.R. (2011) Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proceedings of the National Academy of Sciences, USA 108, 2083820843.Google Scholar
Muller, K., Carstens, A.C., Linkies, A., Torres, M.A. and Leubner-Metzger, G. (2009) The NADPH-oxidase AtRBOHB plays a role in Arabidopsis seed after-ripening. New Phytologist 184, 885897.Google Scholar
Muller, K., Bouyer, D., Schnittger, A. and Kermode, A.R. (2012) Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS One 7(12), e51532.Google Scholar
Munir, J., Dorn, L.A., Donohue, K. and Schmitt, J. (2001) The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brassicaceae). American Journal of Botany 88, 12401249.Google Scholar
Nakabayashi, K., Bartsch, M., Xiang, Y., Miatton, E., Pellengahr, S., Yano, R., Seo, M. and Soppe, W.J.J. (2012) The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds. Plant Cell 24, 28262838.Google Scholar
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2009) Three Arabidopsis SnRK2 protein kinases, srk2d/snrk2.2, srk2e/snrk2.6/ost1 and srk2i/snrk2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50, 13451363.Google Scholar
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165185.Google Scholar
Nambara, E., Naito, S. and McCourt, P. (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant Journal 2, 435441.Google Scholar
Nambara, E., Keith, K., McCourt, P. and Naito, S. (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana . Development 121, 629636.Google Scholar
Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M. and Kamiya, Y. (2010) Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20, 5567.Google Scholar
Nelson, D.C., Riseborough, J.A., Flematti, G.R., Stevens, J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology 149, 863873.Google Scholar
Nelson, D.C., Flematti, G.R., Riseborough, J.A., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana . Proceedings of the National Academy of Sciences, USA 107, 70957100.Google Scholar
Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63, 107130.Google Scholar
Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K. and Hirayama, T. (2007) ABA-HYPERSENSITIVE GERMINATION 1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant Journal 50, 935949.Google Scholar
Nonogaki, M., Sall, K., Nambara, E. and Nonogaki, H. (2014) Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. Plant Journal 78, 527539.Google Scholar
Ogawa, M., Hanada, A., Yamauchi, Y., Kuwalhara, A., Kamiya, Y. and Yamaguchi, S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15, 15911604.Google Scholar
Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C. and Choi, G. (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana . Plant Cell 16, 30453058.Google Scholar
Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.I. and Choi, G. (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant Journal 47, 124139.Google Scholar
Oh, E., Yamaguchi, S., Hu, J.H., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.P., Kamiya, Y. and Choi, G. (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 11921208.Google Scholar
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97107.Google Scholar
Ooms, J., Leon-Kloosterziel, K.M., Bartels, D., Koornneef, M. and Karssen, C.M. (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiology 102, 11851191.Google Scholar
Oracz, K., Bouteau, H.E.M., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant Journal 50, 452465.Google Scholar
Pandey, S., Nelson, D.C. and Assmann, S.M. (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136148.Google Scholar
Park, J., Lee, N., Kim, W., Lim, S. and Choi, G. (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23, 14041415.Google Scholar
Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F. and Cutler, S.R. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 10681071.Google Scholar
Peeters, A.J., Blankestijn-De Vries, H., Hanhart, C.J., Leon-Kloosterziel, K.M., Zeevaart, J.A. and Koornneef, M. (2002) Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiologia Plantarum 115, 604612.Google Scholar
Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y. and Lopez-Molina, L. (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 27292745.Google Scholar
Raghavendra, A.S., Gonugunta, V.K., Christmann, A. and Grill, E. (2010) ABA perception and signalling. Trends in Plant Science 15, 395401.Google Scholar
Rajjou, L. and Debeaujon, I. (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies 331, 796805.Google Scholar
Raz, V., Bergervoet, J.H. and Koornneef, M. (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128, 243252.Google Scholar
Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.H., Santiago, J., Flexas, J., Schroeder, J.I. and Rodriguez, P.L. (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology 150, 13451355.Google Scholar
Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O. and Rodriguez, P.L. (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant Journal 37, 354369.Google Scholar
Schmuths, H., Bachmann, K., Weber, W.E., Horres, R. and Hoffmann, M.H. (2006) Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana . Annals of Botany 97, 623634.Google Scholar
Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., Fan, R.C., Xu, Y.H. and Zhang, D.P. (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823826.Google Scholar
Singh, R., Matus-Cadiz, M., Baga, M., Hucl, P. and Chibbar, R.N. (2010) Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174, 391408.Google Scholar
Soon, F.F., Ng, L.M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.L., Cutler, S., Zhu, J.K., Griffin, P.R., Melcher, K. and Xu, H.E. (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 8588.Google Scholar
Sparks, D., Reid, W., Yates, I.E., Smith, M.W. and Stevenson, T.G. (1995) Fruiting stress induces shuck decline and premature germination in pecan. Journal of the American Society for Horticultural Science 120, 4353.Google Scholar
Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (2001) LEAFY COTYLEDON 2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences, USA 98, 1180611811.Google Scholar
Sugimoto, K., Takeuchi, Y., Ebana, K., Miyao, A., Hirochika, H., Hara, N., Ishiyama, K., Kobayashi, M., Ban, Y., Hattori, T. and Yano, M. (2010) Molecular cloning of SDR4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences, USA 107, 57925797.Google Scholar
Sugliani, M., Brambilla, V., Clerkx, E.J., Koornneef, M. and Soppe, W.J. (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22, 19361946.Google Scholar
Tao, L., Wang, X., Tan, H., Chen, H., Yang, C., Zhuang, J. and Zheng, K. (2007) Physiological analysis on pre-harvest sprouting in recombinant inbred rice lines. Frontiers of Agriculture China 1, 2429.Google Scholar
Teng, S., Rognoni, S., Bentsink, L. and Smeekens, S. (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant Journal 55, 372381.Google Scholar
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal 23, 363374.Google Scholar
To, A., Valon, C., Savino, G., Guilleminot, J., Devic, M., Giraudat, J. and Parcy, F. (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18, 16421651.Google Scholar
Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2010) Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant and Cell Physiology 51, 18211839.Google Scholar
Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J.C., Ishihama, Y., Peck, S.C. and Shinozaki, K. (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana . Science Signaling 6(270), rs8.Google Scholar
van Der Schaar, W., Alonso-Blanco, C., Leon-Kloosterziel, K.M., Jansen, R.C., van Ooijen, J.W. and Koornneef, M. (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and mqm mapping. Heredity 79, 190200.Google Scholar
Wang, F. and Perry, S.E. (2013) Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiology 161, 12511264.Google Scholar
Wang, P.C., Xue, L., Batelli, G., Lee, S., Hou, Y.J., Van Oosten, M.J., Zhang, H.M., Tao, W.A. and Zhu, J.K. (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, USA 110, 1120511210.Google Scholar
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y. and Yamaguchi, S. (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367378.Google Scholar
Yano, R., Takebayashi, Y., Nambara, E., Kamiya, Y. and Seo, M. (2013) Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana . Plant Journal 74, 815828.Google Scholar
Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K. and Hirayama, T. (2006) ABA-HYPERSENSITIVE GERMINATION 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiology 140, 115126.Google Scholar
Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2010) ARAB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal 61, 672685.Google Scholar
Zhang, X.R., Garreton, V. and Chua, N.H. (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes and Development 19, 15321543.Google Scholar
Zheng, J., Chen, F.Y., Wang, Z., Cao, H., Li, X.Y., Deng, X., Soppe, W.J.J., Li, Y. and Liu, Y.X. (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytologist 193, 605616.Google Scholar