Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-07T17:39:30.812Z Has data issue: false hasContentIssue false

Differential RNA- and protein-expression profiles of cactus seeds capable of hydration memory

Published online by Cambridge University Press:  09 October 2013

Eduardo López-Urrutia
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
Martha Martínez-García
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
Alejandro Monsalvo-Reyes
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
Victor Salazar-Rojas
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
Raymundo Montoya
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
Jorge E. Campos*
Affiliation:
Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No 1, Los Reyes Iztacala, Tlalnepantla, Estado de México Apdo Postal 314C.P. 54000, México
*
*Correspondence Email: jcampos@unam.mx

Abstract

Hydration memory is a phenomenon in which a seed can tolerate discontinuous hydration periods, displaying enhanced germination after one or multiple hydration–dehydration (HD) cycles; it was described physiologically in a few cactus species around 15 years ago. Although no additional work was done on this subject, it has great biotechnological potential since its analysis would permit predictions about whether a seed can withstand discontinuous hydration; in the long run, the knowledge about its regulation might lead to induction of this resistance, so we aimed to provide an initial approach to the molecular mechanisms that underlie hydration memory. This phenomenon was reproduced successfully in our lab with Ferocactus peninsulae seeds. Using two-dimensional (2D) electrophoresis, we compared expression patterns of proteins involved in seed maturation of seeds and seedlings subjected to an HD cycle treatment. We found differential expression of several proteins possibly involved in primary metabolism, ubiquitination pathway and reserve protein availability regulation in seeds and seedlings subjected to an HD cycle. We also found differential stability of total RNA. These results strongly suggest that the differential expression of proteins is at least partially related to the hydration memory process.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashraf, M. (2010) Inducing drought tolerance in plants: Recent advances. Biotechnology Advances 28, 169183.Google Scholar
Batlla, D. and Benech-Arnold, R.L. (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Molecular Biology 73, 313.CrossRefGoogle ScholarPubMed
Bu, Q., Li, H., Zhao, Q., Jiang, H., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Wang, D. and Li, C. (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiology 150, 463481.CrossRefGoogle ScholarPubMed
Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M. and Finch-Savage, W.E. (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant Journal 46, 805822.Google Scholar
Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A. and Stanca, A.M. (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field and Crop Research 105, 114.Google Scholar
Dubrovsky, J.G. (1996) Seed hydration memory in Sonoran desert cacti and its ecological implication. American Journal of Botany 83, 624632.Google Scholar
Dubrovsky, J.G. (1998) Discontinuous hydration as a facultative requirement for seed germination in two cactus species of the Sonoran Desert. Journal of the Torrey Botanical Society 125, 3339.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Flood, P.D.J., Harbinson, J. and Aarts, M.G.M. (2011) Natural genetic variation in plant photosynthesis. Trends in Plant Science 16, 327335.CrossRefGoogle ScholarPubMed
Footitt, S., Douterelo-Soler, I., Clay, H. and Finch-Savage, W.E. (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences USA 108, 2023620241.Google Scholar
Gallardo, K., Job, C., Groot, , , S.P.C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology 126, 835848.CrossRefGoogle ScholarPubMed
Gomes, T.R., Oliva, M.L., Lopes, M.T.P. and Salas, C.E. (2011) Plant proteinases and inhibitors: an overview of biological function and pharmacological activity. Current Protein and Peptide Science 12, 417436.CrossRefGoogle ScholarPubMed
Guo, Q., Zhang, J., Gao, Q., Xing, S., Li, F. and Wang, W. (2008) Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. Journal of Plant Physiology 165, 17451755.Google Scholar
Gutiérrez, R.A., MacIntosh, G.C. and Green, P.J. (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends in Plant Science 4, 429438.Google Scholar
Holdsworth, M.J., Bentsink, L. and Soppe, W.J.J. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.CrossRefGoogle ScholarPubMed
Hussain, A. and Peng, J. (2003) DELLA Proteins and GA signalling in Arabidopsis. Journal of Plant Growth Regulation 22, 134140.CrossRefGoogle Scholar
International Seed Testing Association (1985) International rules for seed testing 1985. Seed Science and Technology 13, 299355.Google Scholar
Lechner, E. (2002) The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. Journal of Biological Chemistry 277, 5006950080.CrossRefGoogle ScholarPubMed
McDonald, M.B. (2000) Seed priming. pp. 287325 in Black, M.; Bewley, J.D. (Eds) Seed technology and its biological basis. Sheffield, Sheffield Academic Press.Google Scholar
Nonogaki, H., Bassel, G.W. and Bewley, J.D. (2010) Germination – still a mystery. Plant Science 179, 574581.Google Scholar
Salinas-Zavala, C.A., Douglas, A.V. and Diaz, H.F. (2002) Interannual variability of NDVI in northwest Mexico. Associated climatic mechanisms and ecological implications. Remote Sensing of Environment 82, 417430.CrossRefGoogle Scholar
Soeda, Y., Konings, M.C., Vorst, O., van Houwelingen, A.M.M.L., Stoopen, G.M., Maliepaard, C.A., Kodde, J., Bino, R.J., Groot, S.P.C. and van der Geest, A.H.M. (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiology 137, 354368.Google Scholar
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology 17, 113122.Google Scholar
Supplementary material: Image

López-Urrutia Supplementary Material

Figure 1

Download López-Urrutia Supplementary Material(Image)
Image 769.4 KB