Skip to main content Accessibility help

Velocity space approach to motion planning of nonholonomic systems

  • Ignacy Duleba (a1) and Wissem Khefifi (a1)


In this paper, a velocity space method of motion planning for nonholonomic systems is presented. This method, based on Lie algebraic principles and locally around consecutive current states, plans a motion towards a goal. It is effective as most of the computations can be carried out analytically. This method is illustrated on the unicycle robot and the inverted pendulum.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Bloch, A. M., Nonholonomic Mechanics and Control (Springer-Verlag, Berlin, 2003).
2.Dubins, L. E., “On curves of minimal length with a constrained on average curvature and with prescribed initial and terminal positions and tangents,” Am. J. Math. 497–516 1957.
3.Reeds, J. A. and Shepp, R. A., “Optimal paths for a car that goes both forward and backwards,” Pacific J. Math. 145 (2), 367393 1990.
4.Fraichard, T. and Scheuer, A., “From Reed and Shepps’ to continuous-curvature paths,” IEEE Trans. Robot. 20 (6), 10251035 2004.
5.Balcom, D. J. and Mason, M. T., “Time optimal trajectories for bounded velocity differential drive vehicles,” Int. J. Robot. Res. 21 (3), 199217 2002.
6.Brockett, R. W., “Control Theory and Riemannian Geometry,” In: New Directions in Applied Mathematics (Springer-Verlag, New York, 1981) pp. 1127.
7.Murray, R. M. and Sastry, S., “Nonholonomic motion planning: Steering using sinusoids,” IEEE Trans. Autom. Control 38 (5), 700716 1993.
8.Fliess, M., Rouchon, P., Lévine, J. and Martin, P., “Flatness, Motion Planning and Trailer Systems,” Proceedings of the Conference on Decision and Control, San Antonio, Texas 1993 pp. 27002705.
9.Lafferriere, G. and Sussmann, H., “Motion Planning for Controllable Systems Without Drift,” Proceedings of IEEE Conference on Robotics and Automation, Sacramento, California 1991, pp. 11481153.
10.Fernandes, C., Gurvits, L. and Li, Z., “Optimal Nonholonomic Motion Planning for Falling Cat,” In: Nonholonomic Motion Planning (Kluwer Academic, Massachussets, 1993 pp. 379421.
11.Sussmann, H., “A Continuation Method for Nonholonomic Path Finding Problem,” Proceedings of the Conference on Decision and Control, San Antario, Texas 1993 pp. 27182723.
12.Divelbiss, A. W. and Wen, J. T., “Nonholonomic Path Planning With Inequality Contraints,” IEEE Conference on Robotics and Automation, San Diego, California 1994 pp. 5257.
13.Tchon, K. and Jakubiak, J., “Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms,” Int. J. Control 26 (14), 13871419 2003.
14.Duleba, I. and Sasiadek, J., “Nonholonomic motion planning based on Newton Algorithm with energy optimization,” IEEE Trans. Control Syst. Technol. 11 (3), 355365 2003.
15.Laumond, J. P., Robot Motion Planning and Control (Springer-Verlag, Berlin, 1998).
16.Li, Z. and Canny, J. F., Nonholonomic Motion Planning (Kluwer Academic, Massachussets, 1993).
17.LaValle, S., Planning Algorithms (Cambridge Univ. Press, UK, 2006).
18.Duleba, I., “Checking controllability of nonholonomic systems via optimal Ph. Hall basis generation,” Proceedings of the IFAC Symposium on Robot Control, Nantes, France 1997 pp. 485490.
19.Chow, W. L., “Über systeme von linearen partiellen differentialgleichungen erster ordnung,” Math. Ann. 117 (1), 98105 1939.
20.Strichartz, R. S., “The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations,” J. Funct. Anal. 72, 320345 1987.
21.Duleba, I., “On a computationally simple form of the generalizad Campbell–Baker–Hausdorff-Dynkin formula,” Syst., Control Lett. 34, 191202 1998.
22.Duleba, I. and Khefifi, W., “Pre-control form of the gCBHD formula for affine nonholonomic systems,” Syst., Control Lett. 55 (2), 146157 2006.
23.Nakamura, Y., Advanced Robotics: Redundancy and Optimization (Addison Wesley, New York, 1991).
24.Spong, M. and Vidyasagar, M., Robot Dynamics and Control (MIT Press, Cambridge, 1989).
25.Hermann, R. and Krener, A., “Nonlinear controllability and observability,” IEEE Trans. Autom. Control 22, 728740 1977.
26.Sussmann, H. J. and Jurdjevic, V., Controllability of Nonlinear System (Springer-Verlag, New York, 1977).
27.Lian, K., Wang, L. and Fu, L., “Controllability of spacecraft systems in a central gravitational field,” IEEE Trans. Autom. Control 39 (12), 24262440 1994.
28.Lynch, K. and Black, C. K., “Recurrence, controllability, and stabilization of juggling,” IEEE Trans. Robot. Autom. 17 (2), 113124 2001.


Related content

Powered by UNSILO

Velocity space approach to motion planning of nonholonomic systems

  • Ignacy Duleba (a1) and Wissem Khefifi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.