Skip to main content Accessibility help

Using the Bioelectric Signals to Control of Wearable Orthosis of the Elbow Joint with Bi-Muscular Pneumatic Servo-Drive

  • Ryszard Dindorf (a1) and Piotr Wos (a1)


This study presents a new design of a wearable orthosis of elbow joint with a bimuscular pneumatic servo-drive (PSD) with control based on the recording of bioelectric signals (BESs). The authors analyzed the impact of the induced brain activity and the muscular tension within the head of the participant on the BESs that can be used to control the PSD of the elbow joint orthosis. To control the elbow joint orthosis, a distributed control system (DCS) was developed, which contains two control layers: a master layer connected to the device for recording the BES and a direct layer contained in a wireless manner with the controller of the PSD. A kinematic-dynamic model of the elbow joint orthosis, patterned after the biological model of human biceps–triceps, was used in the programming of the PSD controller. A biomimetic dynamic model of the pneumatic muscle actuator (PMA) was used, in which the contraction force results from the adopted exponential static model of the pneumatic muscle (PM). The use of direct visual feedback (DVF) makes it possible for the participant to focus on the movement of the orthosis taking into account the motoric functions of the elbow.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Ripel, T., Krejsa, J., Hrbacek, J. and Cizmar, I., “Active elbow orthosis,” Int. J. Adv. Robot. Syst. 1, 110 (2014).
2.Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J. P. and Archambault, P. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33, 1939 (2015).
3. Yap, H. Kai, Lim, J. H., Nasralla, F., Goh, J. C. H. and Yeow, R. C. H., “A Soft Exoskeleton for Hand Assistive and Rehabilitation Application using Pneumatic Actuators with Variable Stiffness,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Washington State Convention Center, Seattle, Washington, DC, USA (2015) pp. 49674972.
4.Herr, H., “Exoskeletons and orthoses: Classification, design challenges and future directions,” J. Neuroeng. Rehabil. 6, 19 (2009).
5.Cooper, R. A., Ohnabe, H. and Hobson, D. A., “An introduction to rehabilitation engineering,” In: Series in Medical Physics and Biomedical Engineering (CRC Press Taylor & Francis Group, Boca Raton, FL, 2006).
6.Shahid, M. K., Fletcher, M., Robati, S. and Pemmaraju, G., “The biomechanical forces that act on the elbow joint,” Ecronicon. Orthop. 1, 111 (2015).
7.Kim, K., Hong, K.-J., Kim, N.-G. and Kwon, T.-K., “Assistance of the elbow flexion motion on the active elbow orthosis using muscular stiffness force feedback,” J. Mech. Sci. Technol. 25, 31953203 (2011).
8.Kiguchi, K., Esaki, R. and Fukuda, T., “Development of a wearable exoskeleton for daily forearm motion assist,” Adv. Robotics. 19, 751771 (2005).
9.Safanos, A., Development of a Wearable Elbow Orthosis, Master Thesis (Tallinn University of Technology, Tallinn, 2017).
10.Schulte, H. F., “The characteristics of the McKibben artificial muscle,” In: The Application of External Power in Prosthetics and Orthotics (National Academy of Sciences, Washington, DC, 1961): Publ. 874, Appendix H, pp. 94115.
11.Sanchez, R. J. Jr., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., Rahman, T., Bobrow, J. E. and Reinkensmeyer, D. J., “A Pneumatic Robot for Re-training Arm Movement after Stroke: Rationale and Mechanical Design,” Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA (2005) pp. 500504.
12.Jackson, A. E., Culmer, P. R., Levesley, M. C., Makower, S. G., Cozens, J. A. and Bhakta, B. B., “Acceptability of Robot Assisted Active Arm Exercise as Part of Rehabilitation After Stroke,” Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR’2009), Kyoto, Japan (2009) pp. 103108.
13.Pavithrana, A., Skariaa, E., Rajana, R. and Jose, J., “Design and fabrication of pneumatic exoskeleton,” Int. Res. J. Eng. Tech. 4, 3642 (2017).
14.Gmerek, A., “Mechanical and Hardware Architecture of the Semi-exoskeleton Arm Rehabilitation Robot,” Arch. Mech. Eng. 4, 557574 (2013).
15.Vetrice, G. and Deaconescu, A., “Elbow Joint Rehabilitation Equipment Actuated by Pneumatic Muscles,” Proceedings of the 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 (CoSME’16), Brasnov, Romania (2016) pp. 16.
16.Liska, O., More, M. and Vasek, V., “Design of Active Feedback for Rehabilitation Device,” Proceedings of the 20th International Conference on Circuits, Systems, Communications and Computers (CSCC’2016), Corfu, Greece (2016) pp. 15.
17.Karnjanaparichat, T. and Pongvuthithum, R., “Adaptive control for a one-link robot arm actuated by pneumatic muscles,” Chiang Mai J. Sci. 35(3), 437446 (2008).
18.Balasubramanian, S., Wei, R., Pérez, P., Shepard, B. A., Koeneman, E., Koeneman, J. and He, J., “RUPERT: An Exoskeleton Robot for Assisting Rehabilitation of Arm Functions,” Proceedings of the 2008 Virtual Rehabilitation, Vancouver, BC, Canada (2008), pp. 163167.
19.Kousidou, S., Tsagarakis, N. G., Smith, C. and G., D. Caldwell, “Task-orientated Biofeedback System for the Rehabilitation of the Upper Limb,” Proceedings of the IEEE 10th International Conference Rehabilitation Robotics (ICORR’2007), Noordwijk, The Netherlands (2007) pp. 376384.
20.Chang, M.-K., “An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators,” Control Eng. Pract. 18, 1322 (2010).
21.Liu, H., Zhang, D., Zhao, Y. and Li, Z. H., “Design and Control of An Upper-limb Power-assist Exoskeleton Ddriven by Pneumatic Muscles,” Proceedings of the 9th JFPS International Symposium on Fluid Power, Matsue, Japan (2014).
22.Canjun, Y., Jiafan, Z., Jie, Z. and Ying, C., “Flexible exoskeleton elbow joint based on pneumatic power,” Patent CN200984250 (2013).
23.Pujana-Arrese, A., Mendizabal, A., Bastegieta, K., Arenas, J. and Landaluze, J., “Bio-inspired Position/force Control of a 1-DOF Set-up Powered by Pneumatic Muscles,” Proceedings of the 18th IFAC World Congress, Milano, Italy (2011).
24.Ueda, J., Ming, D., Krishnamoorthy, V., Shinohara, M. and Ogasawara, T., “Individual muscle control using an exoskeleton robot for muscle function testing,” IEEE Trans. Neural. Syst. Rehabil. Eng. 4, 112 (2010)
25.Oguntosin, V., Harwin, W. S., Kawamura, S., Nasuto, S. J. and Hayashi, Y., “Development of a Wearable Assistive Soft Robotic Device for Elbow Rehabilitation,” Proceedings of the 11th International Conference on Rehabilitation Robotics, Singapore (2015) pp. 747752.
26.Fairclough, S. H., Gilleade, K., Nack, L. E. and Mandryk, R. L., “Brain and Body Interfaces: Designing for Meaningful Interaction,” Proceedings of the ACM CHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada (2011) pp. 6568.
27.Gnanayutham, P. and George, J., “Inclusive design for brain body interfaces,” In: Foundations of Augmented Cognition (Springer Verlag, Berlin, Heidelberg, 2011) pp. 102111.
28.Shindo, K., Kawashima, K., Ushiba, J., Ota, N., Ito, M., Ota, T., Kimura, A. and Liu, M., “Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: A preliminary case series study,” J. Rehabil. Med. 43, 951957 (2011).
29.Furukawa, J., Multi-channel Bio-Signal-Based Human Movement Estimation for Assistive Robot Control Ph.D. Thesis (Osaka University, Osaka, 2016).
30.Kim, J. H., “Brain-machine interface in robot-assisted neurorehabilitation for patients with stroke and upper extremity weakness – The therapeutic turning point,” Brain Neurorehabil. 9, 110 (2016)
31.Kamatani, D., Fujiwara, T., Uschiba, J. and Shindo, K., “Study for Evaluation Method of Effect of BMI Rehabilitation by Using near Infrared Spectroscopy,” Proceedings of the Neuro 2010, Kobe, Japan (2010) pp. 216.
32.French, J. A., Rose, C. G. and O’Malley, M. K., “System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation,” Proceedings of the ASME 2014 Dynamic Systems and Control Conference, San Antonio, TX, USA (2014) pp. 15.
33.Daly, J. J. and Huggins, J. E.Brain-computer interface: Current and emerging rehabilitation applications,” Arch. Phys. Med. Rehabil. 96(3), 17 (2015).
34.Daly, J. J., Jane, E. and Huggins, J. E., “Brain-computer interface: Current and emerging rehabilitation applications,” Arch. Phys. Med. Rehabil. 3, 17 (2015).
35.Dindorf, R., Woś, P. and Pawelec, K., “Study of the Possibility of use of Bioelectric Signals to Wireless Remote Control of the Electro-pneumatic Positioning Systems,” Proceedings of the 23rd International Conference Engineering Mechanics 2017, Svratka, Czech Republic (2017) pp. 270273.
36.Mazur, S., Dindorf, R. and Wos, P., “Remote control of the electro-pneumatic servo drive using biosignals,” Tech. Trans. Mech. 1-M, 245256 (2013)
37.Hill, A. V., “The Heat of Shortening and the Dynamic Constants of Muscle,” Proceedings of the Royal Society, London, UK (1938) pp. 612745.
38.Phillips, C. A., Repperger, D. W., Neidhard-Doll, A. T. and Reynolds, D. B., “Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch,” Comput. Biol. Med. 34, 307322 (2004).
39.Hall, K. L., Dynamic Control for a Pneumatic Muscle Actuator to Achieve Isokinetic Muscle Strengthening, Doctor Thesis (Wright State University, 2011).
40.Reynolds, D. B., Repperger, D. W., Phillips, C. A. and Bandry, G., “Modeling the dynamic characteristics of pneumatic muscle,” Ann. Biomed. Eng. 31, 310317 (2003).
41.Dindorf, R., “Modelling of artificial arm actuated by pneumatic muscle actuators,” Int. J. Appl. Mech. Eng. 15(3), 667683 (2010).
42.Choi, T.-Y., Choi, B.-S., Lee, J.-J., “Manipulator Operation Using Joint Stiffness Adjusting by Pneumatic Muscles,” Proceedings of the 4th International Conference on Human System Interaction, Krakow, Poland (2008) pp. 434439.
43.Klute, G. K., Czerniecki, J. M. and Hannaford, N. B., “Artificial muscles: Actuators for biorobotic systems,” Int. J. Robot. Res. 4, 295309 (2002).
44.Smagt, P., Groen, F. and Schulten, K., “Analysis and control of a rubbertuator arm,” Biol. Cybern. 75, 443450 (1996).
45.Shin, D., Khatib, O. and Cutkosky, M., “Design Methodologies of the Hybrid Actuation Approach for Human-friendly Robot,” Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan (2009) pp. 16.
46.Dindorf, R., “Flexible pneumatic actuators,” Monograph M55 (Kielce University of Technology, Kielce, 2014).
47.Dindorf, R., Takosoglu, J. and Wos, P., “Developments of pneumatic control systems,” Monograph M89 (Kielce University of Technology, Kielce, 2017).
48.Kumru, H., Albu, S., Pelayo, R., Rothwell, J., Opisso, E., Leon, D., Soler, D. and Tormos, J. M., “Motor cortex plasticity during unilateral finger movement with mirror visual feedback,” Natural Plast. 2016, 18 (2016).
49.Manto, M., Rocon, E., Pons, J., Belda, J. M. and Camut, S., “Evaluation of a wearable orthosis and an associated algorithm for tremor suppression,” Physiol. Meas. 28(4), 415425 (2007).
50.Taheri, B., Case, D. and Richer, E., “Active Tremor Estimation and Suppression in Human Elbow Joint,” Proceedings of the ASME 2011 Dynamic Systems and Control Conference, Arlington, VA, USA (2011) pp. 115120.
51.Reynolds, B. and Waechter, A., Brain Computer Interfacing Using the Neural Impulse Actuator. A Usability and Statistical Evaluation, Ph.D. Thesis (California Polytechnic State University, Los Angeles, 2009).
52.Mazur, S., Dindorf, R. and Wos, P., “Wireless Control of the Electro-pneumatic Servo Drive,” Proceedings of the 33rd International Conference Information Systems Architecture and Technology, Szklarska Poreba, Poland, September 16–18 (2012) pp. 231240.
53.Pampu, N. C., “Study of effects of the short time fourier transform configuration on EEG spectral estimates,” Acta. Technica. Napocensis. Electron. Telecom. 52(4), 2629 (2011).
54.Mazzeo, M., Drowsiness Detection Through Spectral Estimation of Eeg Signals, Master Thesis (Politecnico di Milano, Milano, 2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed