Skip to main content Accessibility help

Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning

  • Jorge Nieto (a1) (a2), Emanuel Slawiñski (a2), Vicente Mut (a2) and Bernardo Wagner (a1)


This work proposes a teleoperation architecture for mobile robots in partially unknown environments under the presence of variable time delay. The system is provided with artificial intelligence represented by a probabilistic path planner that, in combination with a prediction module, assists the operator while guaranteeing a collision-free motion. For this purpose, a certain level of autonomy is given to the system. The structure was tested in indoor environments for different kinds of operators. A maximum time delay of 2s was successfully coped with.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Aldrich, J., “Correlations genuine and spurious in pearson and yule,” Stat. Sci. 10 (4), 364376 (1995).
2.Aicardi, M., Casalino, G., Bicchi, A. and Balestrino, A., “Closed loop steering of unicycle-like vehicles via Lyapunov techniques,” IEEE Robot. Autom. Mag. 2, 2735 (1995).
3.Anderson, R. J. and Spong, M., “Bilateral control of teleoperators with time delay,” IEEE Trans. Autom. Control 34 (5), 494501 (1989).
4.Bejczy, A. K., Kim, W. S. and Venema, S. C., “The Phantom Robot: Predictive Displays for Teleoperation with Time Delay,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA (1990) pp. 546551.
5.Brady, K. and Tarn, T. J., “Internet-Based Teleoperation,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea (2000) pp. 644649.
6.Elhajj, I., Xi, Ni., Fung, W. K., Liu, Y. H., Hasegawa, Y. and Fukuda, T., “Supermedia-enhanced internet-based telerobotics,” Proc. IEEE. 91 (3), 396421 (2003).
7.Ferguson, D., Kalra, N. and Stentz, A., “Replanning with RRTs,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 12431248.
8.Funda, J. and Paul, R. P., “Teleprogramming: Toward delay-invariant remote manipulation,” Presence: Teleop. Virt. Environ. 1 (1), 2944 (1992).
9.Hernando, M. and Gambao, E., “A Robot Teleprogramming Architecture,” Proceedings of the International Conference on Advanced Intelligent Mechatronics, Kobe, Japan (2003) pp. 11131118.
10.Hokayem, P. F. and Spong, M. W., “Bilateral tele-operation: An historical survey,” Autom. 42 (12), 20352057 (2006).
11.Kavraki, L. E., Svetska, P., Latombe, J. C. and Overmars, M., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom. 12 (4), 566580 (1996).
12.Kikuchi, J., Takeo, K. and Kosuge, K., “Teleoperation System via Computer Network for Dynamic Environment,” Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998) pp. 35343539.
13.Kim, W., Hannaford, B. and Bejczy, A., “Force reflection and shared compliant control in operating telemanipulators with time delay,” IEEE Trans. Robot. Autom. 8 (2), 176185 (1992).
14.LaValle, S. M., “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Technical Report No., 98–11. Computer Science Department, Iowa State University (1998).
15.LaValle, S. M., Planning Algorithms (Cambridge University Press, Cambridge, MA, USA, 2006).
16.Lawrence, D. A., “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom. 9 (5), 624637 (1993).
17.Lee, D. J., Martinez-Palafox, O. and Spong, M. W., “Bilateral Teleoperation of a Wheeled Mobile Robot over Delayed Communication Networks,” Proceedings of IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 32983303.
18.Niemeyer, G. and Slotine, J. J. E., “Stable adaptive teleoperation,” IEEE J. Ocean. Eng. 16 (1), 152162 (1991).
19.Nieto, J., Slawiñski, E., Mut, V. and Wagner, B., “Online Path Planning Based on Rapidly-Exploring Random Trees,” Proceedings of IEEE, International Conference on Industrial Technology, Valparaiso, Chile (2010) pp. 14311436.
20.Nieto, J., Slawiñski, E., Mut, V. and Wagner, B., “Mobile Robot Teleoperation Augmented with Prediction and Path-Planning,” Proceedings of the International Symposium on Analysis, Design and Evaluation of Human-Machine Systems (IFAC-HMS '10), Valenciennes, France (Aug. 31–Sep. 3, 2010).
21.Park, J. H. and Cho, H. C., “Sliding-Mode Control of Bilateral Teleoperation Systems with Force-Reflection on the Internet,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan (2000) pp. 11871192.
22.Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control (The MIT Press, Cambrige, MA, USA, 1992).
23.Sheridan, T. B., “Teleoperation, telerobotics and telepresence: A progress report,” Control Eng. Pract. 3 (2), 205214 (1995).
24.Slawiñski, E., Mut, V. and Postigo, J., “Teleoperation of mobile robots with time-varying delay,” IEEE Trans. Robot. 23 (5), 10711082 (2007).
25.Slawiñski, E. and Mut, V., “Control using prediction for teleoperation of mobile robots,” Proceedings of the IEEE International Conference on Mechatronics and Automation, Harbin, China (2007) pp. 11721787.
26.Slawiñski, E. and Mut, V., “Control scheme including prediction and augmented reality for teleoperation of mobile robots,” Robotica 28 (1), 1122 (2010).
27.Staal, M., “Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework,” NASA TM 2004-212824 [Online] 2004, (accessed Jul 8, 2010).
28.Carelli, R., Secchi, H. and Mut, V., “Algorithms for stable control of mobile robots with obstacle avoidance,” Latin Am. Appl. Res. 29 (2–3), 191196 (1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed