Skip to main content Accessibility help

Topology and Size–Shape Optimization of an Adaptive Compliant Gripper with High Mechanical Advantage for Grasping Irregular Objects

  • Chih-Hsing Liu (a1), Chen-Hua Chiu (a1), Mao-Cheng Hsu (a1), Yang Chen (a1) and Yen-Pin Chiang (a1)...


This study presents an optimal design procedure including topology optimization and size–shape optimization methods to maximize mechanical advantage (which is defined as the ratio of output force to input force) of the synthesized compliant mechanism. The formulation of the topology optimization method to design compliant mechanisms with multiple output ports is presented. The topology-optimized result is used as the initial design domain for subsequent size–shape optimization process. The proposed optimal design procedure is used to synthesize an adaptive compliant gripper with high mechanical advantage. The proposed gripper is a monolithic two-finger design and is prototyped using silicon rubber. Experimental studies including mechanical advantage test, object grasping test, and payload test are carried out to evaluate the design. The results show that the proposed adaptive complaint gripper assembly can effectively grasp irregular objects up to 2.7 kg.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Eschenauer, H. A. and Olhoff, N., “Topology optimization of continuum structures: A review,” ASME Appl. Mech. Rev. 54(4), 331390 (2001).
2. Rozvany, G. I. N., “A critical review of established methods of structural topology optimization,” Struct. Multidiscipl. Optim. 37(3), 217237 (2009).
3. Sigmund, O. and Maute, K., “Topology optimization approaches,” Struct. Multidiscipl. Optim. 48(6), 10311055 (2013).
4. van Dijk, N. P., Maute, K., Langelaar, M. and van Keulen, F., “Level-set methods for structural topology optimization: A review,” Struct. Multidiscipl. Optim. 48(3), 437472 (2013).
5. Deaton, J. D. and Grandhi, R. V., “A survey of structural and multidisciplinary continuum topology optimization: Post 2000,” Struct. Multidiscipl. Optim. 49(1), 138 (2014).
6. Bendsøe, M. P., “Optimal shape design as a material distribution problem,” Struct. Multidiscipl. Optim. 1(4), 193202 (1989).
7. Bendsøe, M. P. and Sigmund, O., “Material interpolation schemes in topology optimization,” Arch. Appl. Mech. 69(9–10), 635654 (1999).
8. Bendsøe, M. P. and Sigmund, O., Topology Optimization: Theory, Methods, and Applications (Springer, Berlin, 2003).
9. Rietz, A., “Sufficiency of a finite exponent in SIMP (power law) methods,” Struct. Multidiscipl. Optim. 21(2), 159163 (2001).
10. Huang, X. and Xie, Y. M., “Convergent and mesh-independent solutions for the bidirectional evolutionary structural optimization method,” Finite Elem. Anal. Des. 43(14), 10391049 (2007).
11. Huang, X. and Xie, Y. M., “Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials,” Comput. Mech. 43(3), 393401 (2009).
12. Huang, X. and Xie, Y. M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (Wiley, West Sussex, UK, 2010).
13. Huang, X., Li, Y., Zhou, S. W. and Xie, Y. M., “Topology optimization of compliant mechanisms with desired structural stiffness,” Eng. Struct. 79, 1321 (2014).
14. Alonso, C., Querin, O. M. and Ansola, R., “A sequential element rejection and admission (SERA) method for compliant mechanisms design,” Struct. Multidiscipl. Optim. 47(6), 795807 (2013).
15. Alonso, C., Ansola, R. and Querin, O. M., “Topology synthesis of multi-material compliant mechanisms with a sequential element rejection and admission method,” Finite Elem. Anal. Des. 85, 1119 (2014).
16. Rahmatalla, S. and Swan, C. C., “Sparse monolithic compliant mechanisms using continuum structural topology optimization,” Int. J. Numer. Methods Eng. 62(12), 15791605 (2005).
17. Zhou, H., “Topology optimization of compliant mechanisms using hybrid discretization model,” ASME J. Mech. Des. 132(11), 111003 (2010).
18. Zhou, H. and Killekar, P. P., “The modified quadrilateral discretization model for the topology optimization of compliant mechanisms,” ASME J. Mech. Des. 133(11), 111007 (2011).
19. Zhu, B., Zhang, X. and Fatikow, S., “Level set-based topology optimization of hinge-free compliant mechanisms using a two-step elastic modeling method,” ASME J. Mech. Des. 136(3), 031007 (2014).
20. Cao, L., Dolovich, A. T. and Zhang, W., “Hybrid compliant mechanism design using a mixed mesh of flexure hinge elements and beam elements through topology optimization,” ASME J. Mech. Des. 137(9), 092303 (2015).
21. Liu, C.-H. and Huang, G.-F., “A topology optimization method with constant volume fraction during iterations for design of compliant mechanisms,” ASME J. Mech. Robot. 8(4), 044505 (2016).
22. Liu, C.-H., Huang, G.-F. and Chen, T.-L., “An evolutionary soft-add topology optimization method for synthesis of compliant mechanisms with maximum output displacement,” ASME J. Mech. Robot. 9(5), 054502 (2017).
23. Krishnakumar, A. and Suresh, K., “Hinge-free compliant mechanism design via the topological level-set,” ASME J. Mech. Des. 137, 031406 (2015).
24. Petković, D., Pavlović, N. D., Shamshirband, S. and Anuar, N. B., “Development of a new type of passively adaptive compliant gripper,” Ind. Robot: Int. J. 40, 610623 (2013).
25. Sigmund, O., “On the design of compliant mechanisms using topology optimization,” Mech. Struct. Mach. 25, 493524 (1997).
26. Montambault, S. and Gosselin, C. M., “Analysis of underactuated mechanical grippers,” ASME J. Mech. Des. 123, 367374 (2001).
27. Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,” Nature 521, 467475 (2015).
28. Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., Buehler, M., Kohout, R., Howe, R. D. and Dollar, A. M., “A compliant, underactuated hand for robust manipulation,” Int. J. Robot. Res. 33(5), 736752 (2014).
29. Deimel, R. and Brock, O., “A novel type of compliant and underactuated robotic hand for dexterous grasping,” Int. J. Robot. Res. 35(1–3), 161185 (2016).
30. Zhou, X., Majidi, C. and O’Reilly, O. M., “Soft hands - An analysis of some gripping mechanisms in soft robot design,” Int. J. Solids Struct. 64–65, 155165 (2015).
31. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C. and Cianchetti, M., “A bioinspired soft robotic gripper for adaptable and effective grasping,” Soft Robot. 2(3), 107116 (2015).
32. Galloway, K. C., Becker, K. P., Phillips, B., Kirby, J., Licht, S., Tchernov, D., Wood, R. J. and Gruber, D. F., “Soft robotic grippers for biological sampling on deep reefs,” Soft Robot. 3(1), 2333 (2016).
33. Katzschmann, R. K., Marchese, A. D. and Rus, D., “Autonomous object manipulation using a soft planar grasping manipulator,” Soft Robot. 2(4), 155164 (2015).
34. Nishioka, Y., Uesu, M., Tsuboi, H., Kawamura, S., Masuda, W., Yasuda, T. and Yamano, M., “Development of a pneumatic soft actuator with pleated inflatable structures,” Adv. Robot. 31(14), 753762 (2017).
35. Pettersson, A., Davis, S., Gray, J. O., Dodd, T. J. and Ohlsson, T., “Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes,” J. Food Eng. 98, 332338 (2010).
36. Pettersson, A., Ohlsson, T., Davis, S., Gray, J. O., and Dodd, T. J., “A hygienically designed force gripper for flexible handling of variable and easily damaged natural food products,” Innov. Food Sci. Emerg. Technol. 12, 344351 (2011).
37. Liu, C.-H. and Lee, K.-M., “Dynamic modeling of damping effects in highly damped compliant fingers for applications involving contacts,” ASME J. Dyn. Syst. Measur. Cont. 134, 011005 (2012).
38. Lee, K.-M. and Liu, C.-H., “Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers,” Comput. Math. Appl. 64, 965977 (2012).
39. Ceccarelli, M., Figliolini, G., Ottaviano, E., Mata, A. and Criado, E., “Designing a robotic gripper for harvesting horticulture products,” Robotica 18(1), 105111 (2000).
40. Russo, M., Ceccarelli, M., Corves, B., Hüsing, M., Lorenz, M., Cafolla, D. and Carbone, G., “Design and test of a gripper prototype for horticulture products,” Robot. Comput.-Integ. Manuf. 44, 266275 (2017).
41. Dimeas, F., Sako, D., Moulianitis, V. and Aspragathos, N., “Design and fuzzy control of a robotic gripper for efficient strawberry harvesting,” Robotica 33(5), 10851098 (2015).
42. Ma, J., Chen, S.-L., Teo, C. S., Kong, C. J., Tay, A., Lin, W. and Mamun, A. A., “A constrained linear quadratic optimization algorithm toward jerk-decoupling cartridge design,” J. Franklin Inst. 354(1), 479500 (2017).
43. Ma, J., Chen, S.-L., Kamaldin, N., Teo, C. S., Tay, A., Mamun, A. A. and Tan, K. K., “Integrated mechatronic design in the flexure-linked dual-drive gantry by constrained linear-quadratic optimization,” IEEE Trans. Ind. Elect. 65(3), 24082418 (2018).
44. Chen, S.-L., Li, X., Teo, C. S. and Tan, K. K., “Composite jerk feedforward and disturbance observer for robust tracking of flexible systems,” Automatica, 80, 253260 (2017).
45. Sigmund, O. and Petersson, J., “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Optim. 16(1), 6875 (1998).
46. Zhou, M., Shyy, Y. K. and Thomas, H. L., “Checkerboard and minimum member size control in topology optimization,” Struct. Multidiscipl. Optim. 21(2), 152158 (2001).
47. Poulsen, T. A., “A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization,” Struct. Multidiscipl. Optim. 24, 396399 (2002).
48. Sigmund, O., “Morphology-based black and white filters for topology optimization,” Struct. Multidiscipl. Optim. 33, 401424 (2007).
49. Rao, S. S., Engineering Optimization: Theory and Practice, 4th edn. (John Wiley & Sons, Hoboken, New Jersey, 2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed