Skip to main content Accessibility help

To enhance transparency of a piezo-actuated tele-micromanipulator using passive bilateral control

  • R. Seifabadi (a1) (a2), S. M. Rezaei (a1) (a2), S. Shiry Ghidary (a1) (a3), M. Zareinejad (a1) (a2) and M. Saadat (a4)...


This paper presents the research work on a 1 degree of freedom (DOF) force reflecting tele-micromanipulation system. This system enables a human operator to position remote objects very precisely having haptic feedback. The slave robot is a nano-positioning piezo-actuator with hysteretic dynamics. This intrinsic nonlinearity results in positioning inaccuracy and instability. Hence, a LuGre friction model is employed to model and compensate for this undesirable behavior. By means of a transformation, the 2-DOF master–slave system (1-DOF each) is decomposed into two 1-DOF new systems: the shape system, representing the master–slave position coordination, and the locked system, representing dynamics of the coordinated system. A key innovation of this paper is to generalize this approach to the hysteresis-type nonlinear teleoperated systems. For the shape system, a position tracking controller is designed in order to achieve position coordination. This position coordination is guaranteed not only in free space motion, but also during contact at the slave side. Furthermore, a force tracking controller is designed for the locked system in order to achieve tracking of the force exerted on the master and slave robots. Using this force controller, transparency is remarkably enhanced. Based on the virtual flywheels concept, passivity of the closed-loop teleoperator is guaranteed against dynamic parameter uncertainties and force measurement inaccuracies. The simulation and experimental results verify the capability of the proposed control architectures in achieving high-level tracking of the position and force signals while the system remains stable.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Kawaji, A., Arai, F. and Fukuda, T., “Calibration for contact type of micro-manipulation,” Proc. 1999 IEEE/RSJ Intern. Conf. Intelligent Robotic, Kyongju, Korea (1999).
2.Yu, S. and Nelson, B. J., Microrobotic Cell Injection (IROS, Seoul, Korea, 2001) pp. 620625.
3.Bergander, A., Breguet, J. M., Perez, R. and Clavel, R., “PZT based manipulators for cell biology,” Int. Symp. Micromechatronics and Human Science, Nagoya, Japan (2001) pp. 193196.
4.Lin, F. J., Shieh, H. J. and Huang, P. K., “Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism,” IEEE Trans. Neural Networks 17 (2) (Mar. 2006).
5.Mayergoyz, D., “Dynamic preisach models of hysteresis,” IEEE Trans. Magn. 24 (6), 29252927 (Nov. 1988).
6.Reimers, A. and Torre, E. D., “Fast preisach-based magnetization model and fast inverse hysteresis model,” IEEE Trans. Magn. 34 (6), 38573866 (Nov. 1998).
7.Song, D. and Li, C. J., “Modeling of piezo actuator's nonlinear and frequency dependent dynamics,” Mechatronics 9, 391410 (1999).
8.Mittal, S. and Menq, C. H., “Hysteresis compensation in electromagnetic actuators through preisach model inversion,” IEEE/ASME Trans. Mechatron. 5 (4), 394409 (Dec. 2000).
9.Tzen, J. J., Jeng, S. L. and Chieng, W. H., “Modeling of piezoelectric actuator for compensation and controller design,” Precision Eng. 27, 7086 (Jan. 2003).
10.Shieh, H.-J., Lin, F.-J., Huang, P.-K. and Teng, L.-T., “Adaptive displacement control with hysteresis modeling for piezoactuated positioning mechanism,” IEEE Trans. Industr. Electr. 53 (3), 905914 (June 2006).
11.Lin, F. J., Shieh, H. J., Huang, P. K. and Shieh, P.-H., “An adaptive recurrent radial basis function network tracking controller for a two-dimensional piezo-positioning stage,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 55, 183198 (2008).
12.Lawrence, D. A. (1992), “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom. 9 (5), 625637 (1992).
13.Yokokohji, Y. and Yoshikawa, T., “Bilateral control of master–slave manipulators for ideal kinesthetic coupling-formulation and experiment,” IEEE Trans. Robot. Autom. 10 (5), 605620 (1994).
14.Li, P. Y., “Passive control of bilateral teleoperated manipulators,” Proc. American Control Conference. (Philadelphia, 1998) pp. 38383842.
15.Lee, D. and Li, P. Y., “Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators,” IEEE Trans. Robot. 21 (5), 936951 (Oct. 2005).
16.Lee, D. and Li, P. Y., “Passive bilateral feedforward control of linear dynamically similar teleoperated manipulators,” IEEE Trans. Robot. 19 (3), 443456 (Jun. 2003).
17.Seifabadi, R., Rezaei, S. M. and Shiry, S., “Robust impedance control of a delayed telemanipulator considering hysteresis nonlinearity of the piezo-actuated slave robot,” EuroHaptics 2008, LNCS 5024 (2008) pp. 63–72.
18.Boukhnifer, M. and Ferreira, A., “H Loop shaping bilateral controller for a two-fingered tele-micromanipulation system,” IEEE Trans. Control Syst. Technol. 15 (5), 891905 (Sep. 2007).
19.Li, P. Y. and Horowitz, R., “Passive velocity field control of mechanical manipulators,” IEEE Trans. Robot. 15 (4), 751763 (Aug. 1999).
20.Ogata, K., Modern Control Engineering, 3rd ed. (Prentice Hall, US, 1990).
21.Canudas de wit, C., Olsson, H., Astom, K. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans. Autom. Control 40 (3), 419425 (Mar. 1995).
22.Gafvert, M., Comparison of Two Friction Model, Master Thesis (Automatic Control Department, Lunde Institute of Technology, 1996).
23.Kuhnen, K. and Janocha, H., “Complex hysteresis modeling of a broad class of hysteretic nonlinearities,” Proc. 8th Int. Conf New Achraiors, Bremen (Jun. 2002) pp. 688691.
24.Habibollahi, H., Rezaei, M., Ghidary, S. S., Zareinejad, M., Seifabadi, R. and Razi, K., “Multirate prediction control of piezoelectric actuators,” IFAC, Seoul, South Korea (2008).
25.Habibollahi, H., Rezaei, M., Ghidary, S. S., Zareinejad, M., Razi, K. and Seifabadi, R., “Hysteresis compensation of piezoelectric actuators under dynamic load condition,” IROS, San Diego, CA (2007).
26.Wang, Y., Xiong, Z., Ding, H. and Zhu, X., “Nonlinear friction compensation and disturbance observer for a high-speed motion platform,” Proc. 2004 IEEE Int. Conf. Robotics 6. Automation, New Orleans, LA (Apr. 2004).
27.Tan, D., Wang, Y. and Zhang, L., “Reserch on the parameter identification of LuGre tire model based on genetic algorithm,” ISKE-2007 Proc. Berlin (Oct. 2007).
28.Seifabadi, R., Modeling of a Teleoperation System with Piezo-Actuator for Micromanipulation, Master Thesis (Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), 2008) pp. 83–84, 118.
29.Barabanov, N. and Ortega, R., “Necessary and sufficient conditions for passivity of the LuGre friction model,” IEEE Trans. Autom. Control 45 (4), 830832 (Apr. 2000).
30.Niemeyer, G., Using Wave Variables in Time Delayed Force Reflecting Teleoperation, Ph.D. Thesis (Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1996) pp. 269–281.
31.Lee, D. J. and Spong, M. N., “Passive bilateral teleoperation with constant time delay,” IEEE Trans. Robot. 22 (2) (Apr. 2006).


To enhance transparency of a piezo-actuated tele-micromanipulator using passive bilateral control

  • R. Seifabadi (a1) (a2), S. M. Rezaei (a1) (a2), S. Shiry Ghidary (a1) (a3), M. Zareinejad (a1) (a2) and M. Saadat (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed