Skip to main content Accessibility help
×
Home

Symmetry and invariants of kinematic chains and parallel manipulators

  • Roberto Simoni (a1), Celso Melchiades Doria (a2) and Daniel Martins (a3)

Summary

This paper presents applications of group theory tools to simplify the analysis of kinematic chains associated with mechanisms and parallel manipulators. For the purpose of this analysis, a kinematic chain is described by its properties, i.e. degrees-of-control, connectivity and redundancy matrices. In number synthesis, kinematic chains are represented by graphs, and thus the symmetry of a kinematic chain is the same as the symmetry of its graph. We present a formal definition of symmetry in kinematic chains based on the automorphism group of its associated graph. The symmetry group of the graph is associated with the graph symmetry. By using the group structure induced by the symmetry of the kinematic chain, we prove that degrees-of-control, connectivity and redundancy are invariants by the action of the automorphism group of the graph. Consequently, it is shown that it is possible to reduce the size of these matrices and thus reduce the complexity of the kinematic analysis of mechanisms and parallel manipulators in early stages of mechanisms design.

Copyright

Corresponding author

*Corresponding author. E-mail: roberto.emc@gmail.com

References

Hide All
1.Agrawal, V. P. and Rao, J. S., “The mobility properties of kinematic chains,” Mech. Mach. Theory. 22 (5), 497504 (1987).
2.Alperin, J. L. and Bell, R. B., Groups and Representations (Springer-Verlag, Berlin, Germany, 1995).
3.Belfiore, N. P. and Di Benedetto, A., “Connectivity and redundancy in spatial robots,” Int. J. Robot. Res. 19 (12), 12451261 (2000).
4.Biggs, N., Algebraic Graph Theory (Cambridge University Press, Cambridge, UK, 1993).
5.Burrow, M., Representation Theory of Finite Groups (Academic Press, New York, 1965).
6.Carboni, A. P., Análise Estrutural de Cadeias Cinemáticas Planas e Espaciais Master's Thesis (Universidade Federal de Santa Catarina, Brazil. 2008).
7.Chang, Z., Zhang, C., Yang, Y. and Wang, Y., “A new method to mechanism kinematic chain isomorphism identification,” Mech. Mach. Theory. 37 (4), 411417 (2002).
8.Chen, I-M. and Burdick, J. W., “Enumerating the non-isomorphic assembly configurations of modular robotic systems,” Int. J. Robot. Res. 17 (7), 702719 (1998).
9.Chen, I. M. and Burdick, J. W., “Determining Task Optimal Modular Robot Assembly Configurations,” In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Aichi, Japan (May 21–27, 1995), vol. 1, pp. 132137.
10.Erdős, P. and Rényi, A., “Asymmetric graphs,” Acta Math. Hung. 14 (3), 295315 (1963).
11.Fang, Y. and Tsai, L. W., “Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures,” Int. J. Robot. Res. 21 (9), 799810 (2002).
12.Godsil, C. D. and Royle, G., Algebraic Graph Theory (Springer, Hamburg, Germany, 2001).
13.Gogu, G., Structural Synthesis of Parallel Robots: Part 1: Methodology (Springer-Verlag, Berlin, Germany, 2008).
14.Gogu, G., Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom (Springer-Verlag, Berlin, Germany, 2009).
15.Gogu, G., “Mobility of mechanisms: A critical review,” Mech. Mach. Theory. 40 (9), 10681097 (2005).
16.Gross, J. L. and Tucker, T. W., Topological Graph Theory (Dover Publications, Dover, UK, 2001).
17.Hell, P. and Nešetřil, J., Graphs and Homomorphisms (Oxford University Press, Oxford, UK, 2004).
18.Homem de Mello, L. S. and Sanderson, A. C., “A correct and complete algorithm for the generation of mechanical assembly sequences,” IEEE Trans. Robot. Autom. 7 (2), 228240 (1991).
19.Huang, Z. and Li, Q. C., “Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method,” Int. J. Robot. Res. 22 (1), 5979 (2003).
20.Hunt, K. H., Kinematic Geometry of Mechanisms (Clarendon, Oxford, UK, 1978).
21.King, G. H. and Tzeng, W. G., “A new graph invariant for graph isomorphism: Probability propagation matrix,” J. Inf. Sci. Eng. 15 (3), 337352 (1999).
22.Kong, X. and Gosselin, C., Type Synthesis of Parallel Mechanisms (Springer-Verlag, Berlin, Germany, 2007).
23.Kong, X. and Gosselin, C. M., “Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory,” IEEE Trans. Robot. Autom. 20 (2), 181190 (2004).
24.Kong, X. and Gosselin, C. M., “Type synthesis of 5-DOF parallel manipulators based on screw theory,” J. Robot. Syst. 22 (10), 535547 (2005).
25.Lauri, J. and Scapellato, R., Topics in Graph Automorphisms and Reconstruction (Cambridge University Press, Cambridge, UK, 2003).
26.Li, Q., Huang, Z. and Hervé, J. M., “Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements,” IEEE Trans. Robot. Autom. 20 (2), 173180 (2004).
27.Liberati, A. and Belfiore, N. P., “A method for the identification of the connectivity in multi-loop kinematic chains: Analysis of chains with total and partial mobility,” Mech. Mach. Theory. 41 (12), 14431466 (2006).
28.Liu, T. and Yu, C. H., “Identification and classification of multi-degree-of-freedom and multi-loop mechanisms,” J. Mech. Des. 117, 104111 (1995).
29.Liu, Y. and Popplestone, R. J., “Symmetry Groups in Analysis of Assembly Kinematics,” In: Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (Apr. 9–11, 1991) pp. 572577.
30.Martins, D. and Carboni, A. P., “Variety and connectivity in kinematic chains,” Mech. Mach. Theory. 43 (10), 12361252 (2008).
31.McKay, B., The Nauty website, http://cs.anu.edu.au/bdm/nauty/ (accessed April 20, 2009).
32.McKay, B., “Nauty Users Guide (Version 1.5)Technical Report TR-CS-90-02 (Department of Computer Science, Australian National University, Australian Capital Territory, Australia, 1990.
33.McKay, B. D., Nauty User's Guide (Version 2.2), http://cs.anu.edu.au/bdm/nauty/nug.pdf (accessed April 29, 2009).
34.McKay, B. D., “Isomorph-free exhaustive generation,” J. Algorithm 26 (2), 306324 (1998).
35.Mruthyunjaya, T. S., “Kinematic structure of mechanisms revisited,” Mech. Mach. Theory. 38 (4), 279320 (2003).
36.Park, W., Liu, Y., Zhou, Y., Moses, M. and Chirikjian, G. S., “Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map,” Robotica 26 (4), 419434 (2008).
37.Petitjean, M., “A definition of symmetry,” Symmetry: Cult. Sci. 18, 99119 (2007).
38.Phillips, J., Freedom in Machinery: Introducing Screw Theory (Cambridge University Press, New York, 1984).
39.Rao, A. C., “Application of fuzzy logic for the study of isomorphism, inversions, symmetry, parallelism and mobility in kinematic chains,” Mech. Mach. Theory 35 (8), 11031116 (2000).
40.Rotman, J. J., An Introduction to the Theory of Groups (Springer, New York, 1995).
41.SAGE. Sage: Open source mathematics software, http://www.sagemath.org/ (accessed April 20, 2009).
42.Selig, J. M., Geometric Fundamentals of Robotics (Springer-Verlag, New York, 2005).
43.Shoham, M. and Roth, B., “Connectivity in open and closed loop robotic mechanisms,” Mech. Mach. Theory 32 (3), 279294 (1997).
44.Simoni, R., Carboni, A. P. and Martins, D., “Enumeration of parallel manipulators,” Robotica 27 (04), 589597 (2008).
45.Simoni, R., Carboni, A. P. and Martins, D., “Enumeration of kinematic chains and mechanisms,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 223 (4), 10171024 (2009).
46.Sorlin, S. and Solnon, C., “A parametric filtering algorithm for the graph isomorphism problem,” Constraints 13 (4), 518537 (2008).
47.Tischler, C., Samuel, A. and Hunt, K., “Selecting multi-freedom multi-loop kinematic chains to suit a given task,” Mech. Mach. Theory 36 (8), 925938 (2001).
48.Tischler, C. R., Samuel, A. E. and Hunt, K. H., “Kinematic chains for robot hands. II: Kinematic constraints, classification, connectivity, and actuation,” Mech. Mach. Theory 30 (8), 12171239 (1995).
49.Tischler, C. R., Samuel, A. E. and Hunt, K. H., “Dextrous robot fingers with desirable kinematic forms,” Int. J. Robot. Res. 17 (9), 9961012 (1998).
50.Tsai, L. W., Mechanism Design: Enumeration of Kinematic Structures According to Function (CRC Press, Boca Raton, FL, USA, 2001).
51.Tuttle, E. R., “Generation of planar kinematic chains,” Mech. Mach. Theory 31 (6), 729748 (1996).
52.Wang, Y. and Chirikjian, G. S., “Workspace generation of hyper-redundant manipulators as a diffusion process on se(n),” IEEE Trans. Robot. Autom. 20 (3), 399408 (2004).
53.Weisstein, E. W., Group generators, from MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/GroupGenerators.html (accessed April 20, 2009).

Keywords

Symmetry and invariants of kinematic chains and parallel manipulators

  • Roberto Simoni (a1), Celso Melchiades Doria (a2) and Daniel Martins (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed