Skip to main content Accessibility help
×
Home

A Single-Loop MIMO Trajectory Tracking Controller for Autonomous Quadrotors: The Control Point Concept

  • Han Woong Bae (a1) and Farbod Fahimi (a1)

Summary

In this paper, a sliding mode control using a control point concept is proposed for an under-actuated quadrotor. The proposed controller controls the position of the control point, a displaced point from the quadrotor’s geometric center, and the yaw angle. This method solves singularity issues in control matrix inversion and enables the utilization of the multi-input multi-output equation to derive the control inputs. The sliding surface is designed to control four outputs while stabilizing roll and pitch angles. Simulation and experimental results show the effectiveness and robustness of the proposed controller in the tracking of a trajectory under parametric uncertainties.

Copyright

Corresponding author

*Corresponding author. E-mail: hb0018@uah.edu

References

Hide All
1.Michael, N., Mellinger, D., Lindsey, Q. and Kumar, V., “The GRASP multiple micro-UAV test bed,IEEE Robot. Autom. Mag. 17(3), 5665 (2010).
2.Mellinger, D., Michael, N. and Kumar, V., “Trajectory generation and control for precise aggressive maneuvers with quadrotors,Int. J. Rob. Res. 31(5), 664674 (2012).
3.Islam, S., Faraz, M., Ashour, R. K., Dias, J. and Seneviratne, L. D., “Robust Adaptive Control of Quadrotor Unmanned Aerial Vehicle with Uncertainty,” Proceedings of the 2015 IEEE International Conference on Robotics and Automation (2015) pp. 17041709.
4.Besnard, L., Shtessel, Y. and Landrum, B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,J. Franklin. Inst. 349(2), 658684 (2012).
5.Hall, C. E. and Shtessel, Y., “Sliding mode disturbance observer-based control for a reusable launch vehicle,J. Guid. Control. Dyn. 29(6), 13151328 (2006).
6.Rios, H., Falcon, R.,Gonzalez, O. and Dzul, A., “Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application,IEEE Trans. Ind. Electron. 66(2), 12641272 (2019).
7.Doukhi, O., Fayjie, A. and Lee, D., “Global Fast Terminal Sliding Mode Control for Quadrotor UAV,” Proceedings of the 17th International Conference on Control, Automation and Systems (2017) pp. 11801182.
8.Nadda, S. and Swarup, A., “On adaptive sliding mode control for improved quadrotor tracking,J. Vib. Control 24(14), 32193230 (2018).
9.Jayakrishnan, H., “Position and Attitude Control of a Quadrotor UAV Using Super Twisting Sliding Mode,” Proceedings of the IFAC-PapersOnLine (2016) pp. 284289.
10.Thanh, L. and Hong, S., “Quadcopter robust adaptive second order sliding mode control based on PID sliding surface,IEEE Access 6, 6685066860 (2018).
11.Jianhua, Y., “Trajectory tracking control for a quadrotor helicopter based on sliding mode theory,Rev. Tec. Fac. Ing. Univ. 39(10), 413421 (2016).
12.Antonelli, G., Cataldi, E., Arrichiello, F., Giordano, P. R., Chiaverini, S. and Franchi, A., “Adaptive trajectory tracking for quadrotor MAVs in presence of parameter uncertainties and external disturbances,” IEEE Trans. Control Syst. Technol. 26(1), 248254 (2018).
13.Shi, X., Zhang, Y. and Zhou, D., “A geometric approach for quadrotor trajectory tracking control,Int. J. Control 88(11), 22172227 (2015).
14.Moreno-Valenzuela, J., Perez-Alcocer, R., Guerrero-Medina, M. and Dzul, A., “Nonlinear PID-type controller for quadrotor trajectory tracking,IEEE/ASME Trans. Mechatron. 23(5), 24362447 (2018).
15.Zhao, B., Xian, B., Zhang, Y. and Zhang, X., “Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology,IEEE Trans. Ind. Electron. 62(5), 28912902 (2015).
16.Liu, H., Li, D., Zuo, Z. and Zhong, Y., “Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties,IEEE Trans. Ind. Electron. 63(4), 22632274 (2016).
17.Kösal, N., An, H. and Fidan, B., “Two-level nonlinear tracking control of a quadrotor unmanned aerial vehicle,IFAC PapersOnLine 49(17), 254259 (2016).
18.Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y. and Ai, X., “Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances,Aerosp. Sci. Technol. 68, 299307 (2017).
19.Zhang, Y., Fang, Z. and Li, H., “Extreme learning machine assisted adaptive control of a quadrotor helicopterMath. Probl. Eng. 2015, 1–12 (2015).
20.Nadda, S. and Swarup, A., “Tracking control design for quadrotor unmanned aerial vehicle,Def. Sci. J. 67(3), 245253 (2017).
21.Tan, W., Marquez, H. and Chen, T., “Robust analysis and PID tuning of cascade control systems,Chem. Eng. Commun. 192(9), 12021220 (2005).
22.Xia, D., Cheng, L. and Yao, Y., “A robust inner and outer loop control method for trajectory tracking of a quadrotor,Sensors (Basel) 17(9), 2147 (2017).
23.Choi, Y.-C. and Ahn, H.-S., “Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests,IEEE/ASME Trans. Mechatron. 20(3), 11791192 (2015).
24.Koo, T. J. and Sastry, S., “Output tracking control design of a helicopter model based on approximate linearization,IEEE/ASME Trans. Mechatron. 20(3), 11791192 (2015).
25.Cabecinhas, D., Cunha, R. and Silvestre, C., “A Nonlinear Quadrotor Trajectory Tracking Controller with Disturbance Rejection,” Proceedings of the 2014 American Control Conference (2014) pp. 560565.
26.Das, A., Subbarao, K. and Lewis, F., “Dynamic inversion with zero-dynamics stabilisation for quadrotor control,IET Control Theory A 3(3), 303314 (2009).
27.Lee, D., Kim, H. J. and Sastry, S., “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter,Int. J. Control Autom. 7(3), 419428 (2009).
28.Benallegue, A., Mokhtari, A. and Fridman, L., “Feedback Linearization and High Order Sliding Mode Observer for a Quadrotor UAV,” Proceedings of the 2006 International Workshop on Variable Structure Systems (2006) pp. 365372.
29.Al-Hiddabi, S. “Quadrotor Control Using Feedback Linearization with Dynamic Extension,” Proceeding of the 6th International Symposium on Mechatronics and Its Applications (2009) pp. 13.
30.Li, L., Sun, L. and Jin, J., “Survey of Advances in Control Algorithms of Quadrotor Unmanned Aerial Vehicle,” Proceedings of the 2015 IEEE 16th International Conference (2015) pp. 107111.
31.Liu, Z. and Hedrick, K., “Dynamic Surface Control Techniques Applied to Horizontal Position Control of a Quadrotor,” Proceedings of the 20th International Conference on System Theory, Control and Computing (2016) pp. 138144.
32.Xu, R. and Özgüner, Ü., “Sliding Mode Control of a Quadrotor Helicopter,” Proceedings of the IEEE 45th Conference on Decision and Control (2006) pp. 49574962.
33.Xu, R. and Özgüner, Ü., “Sliding mode control of a class of underactuated systems,Automatica 44(1), 233241 (2008).
34.Poultney, A., Kennedy, C., Clayton, G. and Ashrafiuon, H., “Robust tracking control of quadrotors based on differential flatness: Simulations and experiments,IEEE/ASME Trans. Mechatron. 23(3), 11261137 (2018).
35.Xiong, J. and Zhang, G., “Discrete-time sliding mode control for a quadrotor UAV,Optik 127(8), 37183722 (2016).
36.Xiong, J. and Zhang, G., “Sliding Mode Control for a Quadrotor UAV with Parameter Uncertainties,” Proceedings of the 2nd International Conference on Control, Automation and Robotics (2016) pp. 207212.
37.Xiong, J. and Zhang, G., “Position and attitude tracking control for a quadrotor UAV,ISA Trans. 53(3), 725731 (2014).
38.Sydney, N., Smyth, B. and Paley, D. A., “Dynamic Control of Autonomous Quadrotor Flight in an Estimated Wind Field,” Proceedings of the 52nd IEEE Conference on Decision and Control (2013) pp. 36093616.
39.Fahimi, F. and Saffarian, M., “The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar,Int. J. Control 84(2), 242252 (2010).
40.MATLAB and Aerospace Toolbox Release 2018a (The MathWorks, Inc., Natick, MA, USA).

Keywords

A Single-Loop MIMO Trajectory Tracking Controller for Autonomous Quadrotors: The Control Point Concept

  • Han Woong Bae (a1) and Farbod Fahimi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.