Skip to main content Accessibility help

Robust Geometric Navigation of a Quadrotor UAV on SE(3)

  • O. Garcia (a1), E. G. Rojo-Rodriguez (a1), A. Sanchez (a2), D. Saucedo (a3) and A. J. Munoz-Vazquez (a4)...


In this paper, a robust geometric navigation algorithm, designed on the special Euclidean group SE(3), of a quadrotor is proposed. The equations of motion for the quadrotor are obtained using the Newton–Euler formulation. The geometric navigation considers a guidance frame which is designed to perform autonomous flights with a convergence to the contour of the task with small normal velocity. For this purpose, a super twisting algorithm controls the nonlinear rotational and translational dynamics as a cascade structure in order to establish the fast and yet smooth tracking with the typical robustness of sliding modes. In this sense, the controller provides robustness against parameter uncertainty, disturbances, convergence to the sliding manifold in finite time, and asymptotic convergence of the trajectory tracking. The algorithm validation is presented through experimental results showing the feasibility of the proposed approach and illustrating that the tracking errors converge asymptotically to the origin.


Corresponding author

*Corresponding author. E-mail:


Hide All
[1] Amezquita-Brooks, L. A., Liceaga-Castro, E., Gonzalez-Sanchez, M., Garcia-Salazar, O. and Martinez-Vazquez, D., “A towards a standard design model for quad-rotors: A review of current models, their accuracy and a novel simplified model,Progress Aerospace Sci., Elsevier 95(8), 123 (2017).
[2] Lozano, R., Unmanned Aerial Vehicles Embedded Control (John Wiley-ISTE Ltd, USA, 2010).
[3] Sanchez, A., Parra-Vega, V., Garcia, O., Ruiz-Sanchez, F. and Ramos-Velasco, L. E., “Time-Parametrization Control of Quadrotors with a Robust Quaternion-based Sliding Mode Controller for Aggressive Maneuvering,2013 European Control Conference (ECC), Zurich, Switzerland (2013) pp. 38763881.
[4] Lee, T., Leok, M. and McClamroch, N. H., “Dynamics of Connected Rigid Bodies in a Perfect Fluid,Proceedings of the IEEE American Control Conference (ACC), St. Louis, MO (2009).
[5] Lee, T., Leok, M. and McClamroch, N. H., “Geometric Tracking Control of a Quadrotor UAV on SE(3),Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA (2010) pp. 54205425.
[6] Lee, T., Leok, M. and McClamroch, N. H., “Nonlinear robust tracking control of a quadrotor UAV on SE(3),Asian J. Control 15(2), 391408 (2013).
[7] Vasconcelos, J. F., Cunha, R., Silvestre, C. and Oliveira, P., “A nonlinear position and attitude observer on SE(3) using landmark measurements,Syst. Control Lett. 59(3–4), 155166 (2010).
[8] Colorado, J., Barrientos, A., Martinez, A., Lafaverges, B. and Valente, J., “Mini-Quadrotor Attitude Control Based on Hybrid Backstepping and Frenet–Serret Theory,Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, AK (2010) pp. 16171622.
[9] Sanyal, A. K. and Nordkvist, N., “Attitude state estimation with multi-rate measurements for almost global attitude feedback tracking,AIAA J. Guidance Control Dyn. 35(3), 868880 (2012).
[10] Pylorof, D. and Bakolas, E., “Tracking a Maneuvering Target with an Underactuated UAV in the SE(3) Space,” AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum (2015) pp. 1–12.
[11] Bohn, J. and Sanyal, A. K., “Almost global finite-time stabilization of rigid body attitude dynamics using rotation matrices,Int. J. Robust Nonlinear Control 26(9), 20082022 (2016).
[12] Viswanathan, S. P., Sanyal, A. K. and Samiei, E., “Integrated guidance and feedback control of underactuated robotics system in SE(3),J. Intell. Robot. Syst. 89(1–2), 251263 (2018).
[13] Viswanathan, S. P., Sanyal, A. K. and Izadi, M., “Integrated Guidance and Nonlinear Feedback Control of Underactuated Unmanned Aerial Vehicles in SE(3),” AIAA Guidance, Navigation and Control Conference, AIAA SciTech Forum (2017) pp. 1–12.
[14] Nazari, M., Maadani, M., Butcher, E. A. and Yucelen, T., “Morse-Lyapunov-Based Control of Rigid Body Motion on TSE(3) via Backstepping,” 2018 AIAA Guidance, Navigation and Control Conference, AIAA SciTech Forum (2018) pp. 1–12.
[15] Mahony, R., Kumar, V. and Corke, P., “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,IEEE Robot. Auto. Mag. 19(3), 2032 (2012).
[16] de Marco, S., Marconi, L., Hamel, T. and Mahony, R., “Output Regulation on the Special Euclidean Group SE(3),IEEE 55th Conference on Decision and Control (CDC 2016), Las Vegas, NV (2016).
[17] Ha, L. N. N. T., Bui, D. H. P. and Hong, S. K., “Nonlinear control for autonomous trajectory tracking while considering collision avoidance of UAVs based on geometric relations,Energies 12(8), 1551 (2019).
[18] Derafa, L., Benallegue, A. and Fridman, L., “Super twisting control algorithm for the attitude tracking of a four rotors UAV,J. Franklin Inst. 349(2), 685699 (2012).
[19] Jayakrishnan, H. J., “Position and Attitude Control of a Quadrotor UAV Using Super Twisting Sliding Mode,” IFAC 2016 (2016) pp. 284–289.
[20] Bouchoucha, M., Seghour, S. and Tadjine, M., “Classical and Second Order Sliding Mode Control Solution to an Attitude Stabilization of a Four Rotors helicopter: From Theory to Experiment,” 2011 IEEE International Conference on Mechatronics (ICM), Istanbul, Turkey (2011).
[21] Munoz, F., Gonzalez-Hernandez, I., Salazar, S. and Espinoza, E. S., “Second order sliding mode controllers for altitude control of a quadrotor UAS: Real-time implementation in outdoor environments,” Neurocomputing 233, 6171 (2017).
[22] Luque-Vega, L., Castillo-Toledo, B. and Loukianov, A. G., “Robust block second order sliding mode control for a quadrotor,J. Franklin Inst. 349(2), 719739 (2012).
[23] Sanchez, A., Parra-Vega, V., Izaguirre, C. and Garcia, O., “Position-yaw tracking of quadrotors,J. Dyn. Syst. Measurement Control 137(6), 112 (2015).
[24] Escobar, A. G., Alazki, H., Valenzuela, J. E. and Garcia, O., “Embedded super twisting control for the attitude of a quadrotor,IEEE Latin America Trans. 14(9), 39743979 (2016).
[25] Mercado, D., Castillo, P. and Lozano, R., “Sliding mode collision-free navigation for quadrotors using monocular vision,” 36(10), 117 (2018).
[26] Stengel, R. F., Flight Dynamics (Princeton University Press, USA, 2004).
[27] Leishman, J. G., Principles of Helicopter Aerodynamics (Cambridge University Press, USA, 2006).
[28] Martinez, O., Amezquita-Brooks, L., Liceaga-Castro, E., Garcia, O. and Martinez, D., “Experimental Assessment of Wind Gust Effect on PVTOL Aerial Vehicles Using a Wind Tunnel,” Proceedings of the 2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico (2015).
[29] Oliva-Palomo, F. Sanchez-Orta, A., Castillo, P. and Alazki, H., “Nonlinear ellipsoid based attitude control for aggressive trajectories in a quadrotor: Closed-loop multi-flips implementation,Control Eng. Pract. 77(8), 150161 (2018).
[30] Aubin, J. P. and Cellina, A., Differential Inclusions: Set-Valued Maps and Viability Theory (Springer Science & Business Media, Germany, 2012).
[31] Moreno, J. A. and Osorio, M., “Strict Lyapunov functions for the super-twisting algorithm,IEEE Trans. Auto. Control 57(4), 10351040 (2012).
[32] Bullo, F. and Lewis, A. D., Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems (Springer, New York, 2005).
[33] Frazzoli, E., Dahleh, M. A. and Ferron, E., “Trajectory Tracking Control Design for Autonomous Helicopters Using a Backstepping Algorithm,Proceedings of the IEEE American Control Conference (ACC), Chicago IL (2000) pp. 41024107.
[34] Seeber, R. and Horn, M., “Stability proof for a well-established super-twisting parameter setting,Automatica 84, 241243 (2017).
[35] Bristeau, P. J., Callou, F., Vissiere, D. and Petit, N., “The Navigation and Control Technology Inside the AR.Drone Micro UAV,Proceedings of the 18th IFAC World Congress, Milano, Italy (2011) pp. 14771484.
[36] Munoz Palacios, F., Espinoza Quesada, E. S., Sanahuja, G., Salazar, S., Garcia Salazar, O. and Garcia Carrillo, L. R., “Test bed for applications of heterogeneous unmanned vehicles,Int. J. Adv. Robot. Syst. (IJARS) 14(1), 114 (2017).


Robust Geometric Navigation of a Quadrotor UAV on SE(3)

  • O. Garcia (a1), E. G. Rojo-Rodriguez (a1), A. Sanchez (a2), D. Saucedo (a3) and A. J. Munoz-Vazquez (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed