Skip to main content Accessibility help

Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators

  • Bolin Liao (a1) and Weijun Liu (a2)


In this paper, a pseudoinverse-type bi-criteria minimization scheme is proposed and investigated for the redundancy resolution of robot manipulators at the joint-acceleration level. Such a bi-criteria minimization scheme combines the weighted minimum acceleration norm solution and the minimum velocity norm solution via a weighting factor. The resultant bi-criteria minimization scheme, formulated as the pseudoinverse-type solution, not only avoids the high joint-velocity and joint-acceleration phenomena but also causes the joint velocity to be near zero at the end of motion. Computer simulation results based on a 4-Degree-of-Freedom planar robot manipulator comprising revolute joints further verify the efficacy and flexibility of the proposed bi-criteria minimization scheme on robotic redundancy resolution.


Corresponding author

*Corresponding author. Email:


Hide All
1. Flash, T., Meirovitch, Y. and Barliya, A., “Models of human movement: Trajectory planning and inverse kinematics studies,” Robot. Auton. Syst. 61 (4), 330339 (2013).
2. Azmy, E. W., “Exact solution of inverse kinematic problem of 6R serial manipulators using Clifford Algebra,” Robotica 31, 417422 (2013).
3. Guigue, A., Ahmadi, M., Langlois, R. and Hayes, M. J. D., “Pareto optimality and multiobjective trajectory planning for a 7-DOF redundant manipulator,” IEEE Trans. Robot. 26 (6), 10941099 (2010).
4. Groh, F., Groh, K. and Verl, A., “On the inverse kinematics of an a priori unknown general 6R-Robot,” Robotica 31, 455463 (2013).
5. Galicki, M., “Path-constrained control of a redundant manipulator in a task space,” Robot. Auton. Syst. 54 (3), 234243 (2006).
6. Kumara, S., Behera, L. and McGinnity, T. M., “Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM-based hint generator,” Robot. Auton. Syst. 58 (5), 622633 (2010).
7. O'Neil, K. A., “Divergence of linear acceleration-based redundancy resolution schemes,” IEEE Trans. Robot. Autom. 18 (4), 625631 (2002).
8. Deo, A. S. and Walker, I. D., “Minimum effort inverse kinematics for redundant manipulators,” IEEE Trans. Robot. Autom. 15 (3), 767775 (1997).
9. Granvagne, I. A. and Walker, I. D., “On the structure of minimum effort solutions with application to kinematic redundancy resolution,” IEEE Trans. Robot. Autom. 16 (6), 855863 (2000).
10. Siciliano, B. and Khatib, O., Springer Handbook of Robotics (Springer-Verlag, Heidelberg, Germany, 2008).
11. Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., Robotics: Modelling, Planning and Control (Springer-Verlag, London, 2009).
12. Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Rotot. Autom. 6 (3), 281290 (1990).
13. Kemény, Z., “Redundancy resolution in robots using parameterization through null space,” IEEE Trans. Ind. Electron. 50 (4), 777783 (2003).
14. Taghirad, H. D. and Bedoustani, Y. B., “An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators,” IEEE Trans. Robot. 27 (6), 11371143 (2011).
15. Patchaikani, P. K., Behera, L. and Prasad, G., “A single network adaptive critic-based redundancy resolution scheme for robot manipulators,” IEEE Trans. Ind. Electron. 59 (8), 32413253 (2012).
16. Abe, A., “Trajectory planning for flexible Cartesian robot manipulator by using artificial neural network: Numerical simulation and experimental verification,” Robotica 29, 797804 (2011).
17. Tchon, K., “Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators,” IEEE Trans. Robot. 24 (6), 14401445 (2008).
18. Marcos, M. G., Machado, J. A. T. and Azevedo-Perdicoúlis, T.-P., “A multi-objective approach for the motion planning of redundant manipulators,” Appl. Soft Comput. 12 (2), 589599 (2012).


Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators

  • Bolin Liao (a1) and Weijun Liu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed