Skip to main content Accessibility help
×
Home

Parameterized collision region for centralized motion planning of multiagents along specified paths

  • Jeong S. Choi (a1), Younghwan Yoon (a2), Myoung H. Choi (a3) and Beom H. Lee (a1)

Summary

This paper presents closed-form analytic solutions for collision detection among multiagents traveling along specified paths. Previous solutions for centralized multiagent systems have mainly used iterative computational approaches for collision detection, which impose a heavy computational burden on the systems. In this paper, we formalize a new mathematical approach to overcoming the difficulty on the basis of simple continuous curvature (SCC) path modeling and a collision representation tool, extended collision map (ECM) method. The formulation permits all the potential collisions to be detected, represented, and parameterized with physical and geometric variables. The proposed parameterized collision region (PCR) method is a simple but precise, computationally efficient tool for describing complicated potential collisions with time traveled. Several simulations are presented to validate the proposed approach for use in centralized collision detectors and to compare the results with those of the iterative computational method and the proximity query package (PQP) method that are available.

Copyright

Corresponding author

*Corresponding author. E-mail: lucidite@gmail.com

References

Hide All
1.Durfee, E. H., Lesser, V. R. and Corkill, D. D., “Trends in cooperative distributed problem solving,” IEEE Trans. Knowl. Data Eng. 1 (1), 6383 (1989).
2.Hsu, D., Kavaraki, L. E., Latombe, J. C., Motwani, R. and Sorkin, S., “On Finding Narrow Passage With Probabilistic Roadmap Planners,” Parallel and Distributed Proceedings of IPPS/SPDP, Orlando, FL (1998) pp. 141153.
3.LaValle, S. M. and Kuffner, J. J., “Randomized kinodynamic planning,” Int. J. Robot. Res. 20 (5), 378400 (2001).
4.Sanchez, G. and Latombe, J. C., “On delaying collision checking in PRM planning - Application to multi-robot coordination,” Int. J. Robot. Res. 21 (1), 1526 (2002).
5.Peng, J. and Akella, S., “Coordinating multiple robots with kinodynamic constraints along specified paths,” Int. J. Robot. Res. 24 (4), 295310 (2005).
6.Peng, J. and Akella, S., “Coordinating Multiple Double Integrator Robots on a Roadmap: Convexity and Global Optimality,” Proceedings of the International Conference on Robotics and Automation, Barcelona, Spain (2005) pp. 27512758.
7.Lavalle, S. M. and Hutchinson, S. A., “Optimal motion planning for multiple robots having independent goals,” IEEE Trans. Robot. Autom. 14 (6), 912925 (1998).
8.Saha, M. and Isto, P., “Multi-Robot Motion Planning by Incremental Coordination,” Proceedings of the International Conference on Intelligent Robotics and Systems, Beijing, China (2006) pp. 59605963.
9.Latombe, J. C., Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991).
10.Fujimura, K., Motion Planning in Dynamic Environment (Springer-Verlag, NewYork, 1991).
11.Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavaraki, L. E. and Thrun, S., Principles of Robot Motion (The MIT Press, Massachusetts, 2005).
12.Lavalle, S. M., Planning Algorithms (Cambridge University Press, Cambridge, 2006).
13.Akella, S. and Hutchinson, S., “Coordinating the Motions of Multiple Robots with Specified Trajectories,” Proceedings of the International Conference on Robotics and Automation, Washington, DC (May 2002) pp. 624631.
14.Guizzo, E., “Three engineers, hundreds of robots, one warehouse,” IEEE Spectr. 45 (7), 2229 (2008).
15.Kant, K. and Zucker, S. W., “Toward efficient trajectory planning: The path-velocity decomposition,” Int. J. Robot Res. 5 (3), 7288 (Fall, 1986).
16.Warren, C. W., “Multiple Robot Path Coordination using Artificial Potential Fields,” Proceedings of IEEE International Conference on Robotics and Automation, Cincinnati, OH (1990) pp. 500505.
17.Lee, P. S. and Wang, L. L., “Collision avoidance by fuzzy logic for AGV navigation,” J. Robot. Syst. 11 (8), 743760 (1994).
18.Krishna, K. M. and Hexmoor, H., “Reactive Collision Avoidance of Multiple Moving Agents by Cooperation and Conflict Propagation,” Proceedings of the International Conference on Robotics and Automation, New Orleans, LA (2004) pp. 21412146.
19.Krishna, K. M. and Hexmoor, H., “Reactive Collision Avoidance of Multiple Moving Agents by Cooperation and Conflict Propagation,” Proceedings of the International Conference on Robotics and Automation, New Orleans, LA (2004) pp. 21412146.
20.Azarm, K. and Schmit, G., “Conflict-Free Motion of Multiple Mobile Robots Based on Decentralized Motion Planning and Negotiation,” Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, NM (Apr. 1997) pp. 35263533.
21.Quottrup, M. M., Bak, T. and Zamanabadi, R. I., “Multi-robot planning: A timed automata approach,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 5, New Orleans, LA (2004) pp. 44174422.
22.Fox, D., Burgard, W. and Thrun, S., “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag. 4 (1), 2333 (1997).
23.Ma, H., Cannon, D. J. and Kumara, S. R. T., “A Scheme Integrating Neural Networks for Real-Time Robotics Collision Detection,” Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995) pp. 881886.
24.Luh, J. Y. S. and Campbell, C. E., “Minimum distance collision-free path planning for industrial robots with a prismatic joint,” IEEE Trans. Autom. Control AC-29 (8), 675680 (Aug 1984).
25.Gilbert, E. G., Johnson, D. W. and Keerthi, S. S., “A Fast Procedure Computing the Distance between Complex Objects in Three-Dimensional Space,” IEEE J. Robot. Autom. 4 (2), 193203 (Apr. 1988).
26.Gill, M. A. and Zomaya, A. Y., Obstacle Avoidance in Multi-Robot Systems (World Scientific, Singapore, 1998).
27.Freud, E. and Hoyer, H., “Real-Time Path Finding in Multirobot Systems Including Obstacle Avoidance,” Int. J. Robot. Res. 7 (1), 4270 (1988).
28.Basta, R. A., Mehrotra, R. and Varanasi, M. R., “Collision Detection for Planning Collision-Free Motion of Two Robot Arms,” Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, PA (1988) pp. 638640.
29.Lee, B. H. and Lee, C. S. G., “Collision-free motion planning of two robots,” IEEE Trans. Syst. Main Cybern. 17 (1), 2131 (Jan./Feb. 1987).
30.Shin, Y. and Bien, Z., “Collision-free trajectory planning for two robots,” Robotica 7, 205212 (Jul.–Sep. 1989).
31.Park, S. H. and Lee, B. H., “Analysis of robot collision characteristics using the concept of the collision map,” Robotica 24, 295303 (May 2006).
32.Park, J. B. and Lee, B. H., “Roadmap-Based Collision-Free Motion Planning for Multiple Moving Agents in a Smart Home Environment,” Lecture Notes in Computer Science (Springer-Verlag, Berlin, Jun. 2007) pp. 7080.
33.Chang, C., Chung, M. J. and Lee, B. H., “Collision avoidance of two general robot manipulators by minimum delay time,” IEEE Trans Syst Main Cybernetics 24 (3), 517522 (Mar. 1994).
34.Ji, S. H., Choi, J. S. and Lee, B. H., “A computational interactive approach to multi-agent motion planning,” Int. J. Control Autom. Sys. 5 (3), 295306 (Jun. 2007).
35.Owen, E. and Montano, L., “A Robocentric Motion Planner for Dynamic Environments using the Velocity Space,” Proceedings in IEEE International Conference on Intelligent Robots and Systems, Beijing, China (2006) pp. 43684374.
36.Larsen, E., Gottschalk, S., Lin, M. C. and Manocha, D., “Fast Distance Queries with Rectangular Swept Sphere Volumes,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA (Apr. 2000) pp. 37193726.
37.Bergen, G., “Efficient collision detection of complex deformable models using AABB trees,” J. Graph. Tools 2 (4), 114 (1997).
38.Mirtich, B., “V-clip: Fast and robust polyhedral collision detection,” ACM Trans. Graph. 17 (3), 177208 (1998).
39.Cohen, J. D., Lin, M. C., Manocha, D. and Ponamgi, M. K., “I-COLLIDE: An Interactive and Exact Collision Detection System for Large-Scale Environments,” Symposium on Interactive 3D graphics, Nashville, TN, USA (1995) pp. 189196.
40.Ehmann, A. and Lin, M. C., “Accurate and fast proximity queries between polyhedra using convex surface decomposition,” Comput. Graph. Forum 20, 500511 (2001).
41.Nieuwenhuisen, D., “Callisto” January, 2010, Accessed http://www.nieuwenhuisen.nl/callisto/callisto.php, 28 March 2011.
42.Geraerts, R. J., Sampling-Based Motin Planning: Analysis and Path Quality,” Ph.D. Thesis (Utrecht University, Utrecht, Netherlands, 2006).
43.LaValle, S. M., “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Technical Report No. 98-11 (Computer Science Department, Iowa State University, Iowa, USA, 1998).
44.Peasgood, M., Clark, C. M. and McPhee, J., “A complete and scalable strategy for coordinating multiple robots within roadmaps,” IEEE Trans. Robotics 24 (2), 283292 (2008).
45.Berg, J., Snoeyink, J., Lin, M. and Manocha, D., “Centralized Path Planning for Multiple Robots: Optimal Decoupling into Sequential Plans,” Proceedings of Robotics: Science and Systems, Seattle, USA (2009) pp. 18.
46.Berg, J. and Overmars, M. H., “Prioritized Motion Planning for Multiple Robots,” Proceedings of the International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005) pp. 22172222.
47.Li, Y., Gupta, K. and Payandeh, S., “Motion Planning of Multiple Agents in Virtual Environments using Coordination Graphs,” Proceedings of the International Conference on Robotics and Automation, Barcelona, Spain (2005) pp. 378383.
48.Scheuer, A. and Fraichard, T., “Continuous-Curvature Path Planning for Car-Like Vehicles,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Grenoble, France (Sep. 1997) pp. 9971003.
49.Esquivel, W. D. and Chiang, L. E., “Nonholonomic path planning among obstacles subject to curvature restrictions,” Robotica 20, 4955 (2002).
50.Waheed, I. and Fotouhi, R., “Trajectory and temporal planning of a wheeled mobile robot on an uneven surface,” Robotica 27 (4), 481498 (2008).
51.Leroy, S., Laumond, J. P. and Simeon, T., “Multiple Path Coordination for Mobile Robots: A Geometric Algorithm,” Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden (1999) pp. 11181123.
52.Jiang, R., Tian, X., Xie, L. and Chen, Y., “A Robot Collision Avoidance Scheme Based on the Moving Obstacle Motion Prediction,” Proceedings of International Colloquium on Computing, Communication, Control, and Management, Guangzhou City, China (2008) pp. 341345.
53.Lin, M. and Gottschalk, S., “Collision Detection Between Geometric Models: A Survey,” Proceedings of IMA Conference on Mathematics of surface, Birmingham, UK (1998).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed