Skip to main content Accessibility help
×
Home

ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels

  • Reza A. Soltan (a1), Hashem Ashrafiuon (a1) and Kenneth R. Muske (a1)

Summary

A new method for real-time obstacle avoidance and trajectory planning of underactuated unmanned surface vessels is presented. In this method, ordinary differential equations (ODEs) are used to define transitional trajectories that can avoid obstacles and reach a final desired target trajectory using a robust tracking control law. The obstacles are approximated and enclosed by elliptical shapes. A transitional trajectory is then defined by a set of ordinary differential equations whose solution is a stable elliptical limit cycle defining the nearest obstacle on the vessel's path to the target. When no obstacle blocks the vessel's path to its target, the transitional trajectory is defined by exponentially stable ODE whose solution is the target trajectory. The planned trajectories are tracked by the vessel through a sliding mode control law that is robust to environmental disturbances and modeling uncertainties and can be computed in real time. The method is illustrated using a complex simulation example with a moving target and multiple moving and rotating obstacles and a simpler experimental example with stationary obstacles.

Copyright

Corresponding author

*Corresponding author. Email: soltan@vt.edu

References

Hide All
1.Fossen, T. I., Guidance and Control of Ocean Vehicles (John Wiley, New York, NY, 1994).
2.Behal, A., Dawson, D. M., Dixon, W. E. and Fang, Y., “Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics,” IEEE Trans. Autom. Control 47 (3), 495500 (2002).
3.Godhavn, J., “Nonlinear Tracking of Underactuated Surface Vessels,” Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan, vol. 1 (Dec. 11–13, 1996) pp. 975980.
4.Sira-Ramirez, H., “Dynamic second-order sliding mode control of the hovercraft vessel,” IEEE Trans. Control Syst. Technol. 10 (6), 860865 (2002).
5.Lefeber, E., Pettersen, K. Y. and Nijmeijer, H., “Tracking control of an underactuated ship,” IEEE Trans. Control Syst. Technol. 11 (1), 5261 (2003).
6.Aguiar, A. P. and Hespanha, J. P., “Position tracking of underactuated vehicles,” Proc. Am. Control Conf. 3, 19881993 (2003).
7.Peterson, K. Y., Mazenc, F. and Nijmeijer, H., “Global uniform asymptotic stabilization of an underactuated surface vessel: Experimental results,” IEEE Trans. Control Syst. Technol. 12 (6), 891903 (2004).
8.Ashrafiuon, H., Muske, K. R., McNinch, L. and Soltan, R., “Sliding model tracking control of surface vessels,” IEEE Trans. Ind. Electron. 55 (11), 40044012 (2008).
9.Defoort, M., Floquet, T., Kokosy, A. and Perruquetti, W., “A novel higher order sliding mode control scheme,” Syst. Control Lett. 58 (2), 102108 (2009).
10.Larson, J., Bruch, M., Haiterman, R., Rogers, J. and Webster, R., “Advances in Autonomous Obstacle Avoidance for Unmanned Surface Vehicles,” AUVSI Unmanned Systems, North America, Washington, DC (Aug. 6–9, 2007).
11.Fujimura, K. and Samet, H., “A hierarchical strategy for path planning among moving obstacles,” IEEE Trans. Robot. Autom. 5 (1), 6169 (1989).
12.Aggarwal, N. and Fujimura, K., “Motion Planning Amidst Planar Moving Obstacles,” IEEE International Conference on Robotics and Automation, San Diego, CA, vol. 3 (May 8–13, 1994) pp. 21532158.
13.Xiaohua, W., Yadav, V. and Balakrishnan, S. N., “Cooperative UAV formation flying with obstacle/collision avoidance,” IEEE Trans. Control Syst. Technol. 15 (4), 672679 (2007).
14.Dieguez, A. R., Sanz, R. and Lopez, J., “Deliberative on-line local path planning for autonomous mobile robots,” J. Intell. Robot. Syst.: Theor. Appl. 37 (1), 119 (2003).
15.Zavlangasand Tzafestas, S. G., “Motion control for mobile robot obstacle avoidance and navigation: A fuzzy logic- based approach,” Syst. Anal.Model. Simul. 43 (12), 16251637 (2003).
16.Ferrara, A. and Rubagotti, M., “Second-order sliding-mode control of a mobile robot based on a harmonic potential field,” IET Control Theor. Appl. 2 (9), 807818 (2008).
17.Kim, J. and Khosla, P. K., “Real-time obstacle avoidance using harmonic potential functions,” IEEE Trans. Robot. Autom. 3, 338349 (1992).
18.Ge, S. S. and Cui, Y. J., “Dynamic motion planning for mobile robots using potential field method,” Autom. Robot. 1, 207222 (2002).
19.Cosio, F. A. and Castaneda, M. P., “Autonomous robot navigation using adaptive potential fields,” Math. Comput. Model. 40 (9–10), 11411156 (2004).
20.Pathak, K. and Agrawal, S. K., “An integrated path-planning and control approach for nonholonomic unicycles using switched local potentials,” IEEE Trans. Robot. 21 (6), 12011208 (2005).
21.Fahimi, F., Nataraj, C. and Ashrafiuon, H., “Real-time obstacle avoidance for multiple mobile robots,” Robotica 27 (2), 189198 (2009).
22.Ellekilde, L. P. and Perram, J. W., “Tool center trajectory planning for industrial robot manipulators using dynamical systems,” Int. J. Robot. Res. 24 (5), 385396 (2005).
23.Kim, D. H. and Kim, J. H., “A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer,” Robot. Auton. Syst. 42 (1), 1730 (2003).
24.Kim, D. H. and Chongkug, P., “Limit Cycle Navigation Method for Mobile Robot,” 27th Chinese Control Conference, Kunming, Yunnan, China (July 16–18, 2008) pp. 320324.
25.Grech, R. and Fabri, S. G., “Trajectory Tracking in the Presence of Obstacles using the Limit Cycle Navigation Method,” IEEE International Symposium on Intelligent Control and the 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus (June 27–29, 2005) pp. 101106.
26.Soltan, R. A., Ashrafiuon, H. and Muske, K. R., “State-Dependent Trajectory Planning and Tracking Control of Unmanned Surface Vessels,” American Control Conference, St. Louis, MO (June 10–12, 2009) pp. 35973602.
27.Ghaffari, A., Tomizuka, M. and Soltan, R. A., “The stability of limit cycles in nonlinear systems,” Nonlinear Dyn. 56 (3), 269275 (2008).
28.Nikkhah, M., Ashrafiuon, H. and Muske, K., “Optimal Sliding Mode Control for Underactuated Systems,” American Control Conference, Minneapolis, MN (June 14–16, 2006) pp. 46884693.
29.Muske, K., Ashrafiuon, H., Haas, G., McCloskey, R. and Flynn, T., “Identification of a Control Oriented Nonlinear Dynamic USV Model,” American Control Conference, Seattle, WA (June 11–13, 2008) pp. 562567.
30.Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control 22, 212222 (1977).
31.Hung, J. Y., Gao, W. and Hun, J. C., “Variable structure control: A survey,” IEEE Trans. Ind. Electron. 40 (1), 222 (1993).
32.Khalil, H. K., Nonlinear Systems (Prentice-Hall, Upper Saddle River, NJ, 1996) pp. 552579.
33.Nikkhah, M. and Ashrafiuon, H., “Robust Control of a Vessel Using Camera Feedback and Extended Kalman Filter,” Paper No. IMECE2006-16164, Proceedings of ASME IMECE, Chicago, IL (Nov. 5–10, 2006).

Keywords

Related content

Powered by UNSILO

ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels

  • Reza A. Soltan (a1), Hashem Ashrafiuon (a1) and Kenneth R. Muske (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.