Skip to main content Accessibility help

A novel three degrees of freedom partially decoupled robot with linear actuators

  • Jaime Gallardo-Alvarado (a1), Gürsel Alici (a2) and Ramón Rodríguez-Castro (a1)


In this work, a new translational robot formed with two different parallel manipulators with a common control point is introduced. An asymmetric parallel manipulator provides three translational degrees of freedom to the proposed robot while the orientation of the end-effector platform is kept constant by means of a Delta-like manipulator. An exact solution is easily derived to solve the forward displacement analysis while a semi-closed form solution is available for solving the inverse displacement analysis. The infinitesimal kinematics of the robot is approached by applying the theory of screws. Finally, a numerical example that consists of solving the inverse/forward displacement analysis as well as the forward acceleration analysis of the end-effector platform is presented. The example also includes the computation of the workspace and the direct/inverse singularities of the example.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Available in the website
2.Clavel, R., “DELTA: A Fast Robot with Parallel Geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Sydney (1988) pp. 91100.
3.Tsai, L. W., “Kinematics of a Three-DOF Platform Manipulator with Three Extensible Limbs,” In: Advances in Robot Kinematics (Lenarcic, J. and Parenti-Castelli, V., eds.) (Kluwer Academic Publishers, London, 1996) pp. 401410.
4.Wenger, P. and Chablat, D., “Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide,” In: Advances in Robot Kinematics (Lenarčič, J. and Stanisič, M. L., eds.) (Kluwer Academic Publishers, London, 2000) pp. 305314.
5.Zhao, T. S. and Huang, Z., “A Novel Three-DOF Translational Platform Mechanism and Its Kinematics,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, Baltimore (2000) paper DETC2000/MECH–14101.
6.Di Gregorio, R., “Kinematics of the Translational 3-URC Mechanism,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como (2001) pp. 147152.
7.Kong, X. and Gosselin, C. M., “Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator,” Int. J. Robot. Res. 21 (9), 791798 (2002).
8.Callegari, M. and Tarantini, M., “Kinematic analysis of a novel translational platform,” ASME J. Mech. Des. 125 (2), 308315 (2003).
9.Gogu, G., “Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations,” Eur. J. Mech. A/Solids 23 (6), 10211039 (2004).
10.Gogu, G., “Mobility Criterion and Overconstraints of Parallel Manipulators,” Proceedings of the CK2005, International Workshop on Computational Kinematics, Cassino (2005) p. 22.
11.Li, Y. and Xu, Q., “Kinematics and Dexterity Analysis for a Novel 3-DOF Translational Parallel Manipulator,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona (2005) pp. 29552960.
12.Li, W., Gao, F. and Zhang, J., “R-CUBE, a decoupled parallel manipulator only with revolute joints,” Mech. Mach. Theory 40 (4), 467473 (2005).
13.Callegari, M., Palpacelli, M. and Scarponi, M., “Kinematics of the 3-CPU Parallel Manipulator Assembled for Motions of Pure Translation,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona (2005) pp. 40314036.
14.Callegari, M., Palpacelli, M. C. and Principi, M., “Dynamics modelling and control of the 3-RCC translational platform,” Mechatronics 16, 589605 (2006).
15.Ruggiu, M., “Kinematics analysis of the CUR translational manipulator,” Mech. Mach. Theory 43 (9), 10871098 (2008).
16.Kong, X. and Gosselin, C. M., “Type Synthesis of Linear Translational Parallel Manipulators,” In: Advances in Robot Kinematics—Theory and Applications (Lenarčič, J. and Thomas, F., eds.) (Kluwer Academic Publishers, 2002) pp. 411420.
17.Kong, X. and Gosselin, C. M., “Type synthesis of 3-DOF translational parallel manipulators based on screw theory,” ASME J. Mech. Des. 126 (1), 8392 (2004).
18.Carricato, M. and Parenti-Castelli, V., “Singularity-free fully-isotropic translational parallel mechanisms,” Int. J. Robot. Res. 21 (2), 161174 (2002).
19.Briot, S. and Bonev, I. A., “Pantopteron: A new fully decoupled 3DOF translational parallel robot for pick-and-place applications,” ASME J. Mech Robotics 1 (1), 021001 (2009).
20.Her, M. G., Chen, C. Y., Karkoub, M. and Hung, Y. C., “A generalised approach to point-to-point motion of multi-DOF parallel manipulators illustrated with TMPM,” Int. J. Adv. Manuf. Technol. 22, 216223 (2003).
21.Gallardo-Alvarado, J., Rico-Martínez, J. M. and Alici, G., “Kinematics and singularity analyses of a 4-DOF parallel manipulator using screw theory,” Mech. Mach. Theory 41, 10481061 (2006).
22.Gallardo-Alvarado, J., Aguilar–Nájera, C. R., Casique-Rosas, L., Pérez-González, L. and Rico-Martínez, J. M., “Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory,” Multibody Syst. Dyn. 20, 307325 (2008).
23.Tsai, L.-W., Robot analysis (John Wiley & Sons, New York, 1999).
24.Gallardo-Alvarado, J., Orozco-Mendoza, H. and Rodríguez-Castro, R., “Finding the jerk properties of multibody systems using helicoidal vector fields,” Inst. Mech. Engr. Part C: J. Mech. Eng. Sci. 222 (11), 22172229 (2008).
25.Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom. 6 (3), 261290 (1990).
26.Roth, B., “Computation in Kinematics,” In: Computational Kinematics (Angeles, J., Hommel, G. and Kovacs, P., eds.) (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993) pp. 314.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed