Skip to main content Accessibility help

Modeling and control of an underactuated tractor–trailer wheeled mobile robot

  • Asghar Khanpoor (a1), Ali Keymasi Khalaji (a2) and S. Ali A. Moosavian (a1)


Trajectory tracking is one of the main control problems in the context of Wheeled Mobile Robots (WMRs). Control of underactuated systems has been focused by many researchers during past few years. In this paper, tracking control of a Tractor–Trailer Wheeled Mobile Robot (TTWMR) has been discussed. TTWMR includes a differential drive WMR towing a passive spherical wheeled trailer. Spherical wheels in contrast with standard wheels make the robot highly underactuated with severe non-linearities. Underactuation is due to the use of spherical wheeled trailer to increase robots' maneuverability and degrees of freedom. In fact, standard wheels are subjected to non-holonomic constraints due to pure rolling and non-slip conditions, which reduce robot maneuverability. In this paper, after introducing the robot, kinematics and kinetics models are obtained. Then, based on a physical intuition, a novel control algorithm is developed for the robot, i.e. Lyapunov-PID control algorithm. Subsequently, singularity avoidance of the proposed algorithm is discussed and the stability of the algorithm is analyzed. Finally, simulation and experimental results are presented which reveal the effectiveness of the proposed algorithm.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Siegwart, R., Nourbakhsh, I. R. and Scaramuzza, D., Introduction to Autonomous Mobile Robots (MIT Press, Massachusetts, 2011).
2. Alipour, K. and Moosavian, S. A. A., “Effect of terrain traction, suspension stiffness and grasp posture on the tip-over stability of wheeled robots with multiple arms,” J. Adv. Robot. 26 (8–9), 817842 (2012).
3. Alipour, K. and Moosavian, S. A. A., “How to ensure stable motion of suspended wheeled mobile robots,” J. Ind. Robot. 38 (2), 139152 (2011).
4. Alipour, K., Moosavian, S. A. A. and Bahramzadeh, Y., “Dynamics of wheeled mobile robots with flexible suspension: Analytical model and verification,” Int. J. Robot. Autom. 23 (4), 242250 (2008).
5. Campion, G., Bastin, G. and Novel, B. D., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Trans. Robot. Autom. 12 (1), 4762 (1996).
6. Mc, N. H.Clamroch and Kolmanovsky, I., “Developments in nonholonomic control problems,” IEEE Control Syst. 15, 2036 (1995).
7. Lapierre, L., Zapata, R. and Lepinay, P., “Combined path-following and obstacle avoidance control of wheeled robot,” The Int. J. Robot. Res. 26 (4), 361375 (2007).
8. Sun, S. and Cui, P., “Path tracking and a partical point stabilization of mobile robot,” Robot. Comput.-Integr. Manuf. 20 (1), 2934 (2004).
9. Prieur, C. and Astolfi, A., “Robust stabilization of chained systems via hybrid control,” IEEE Trans. Autom. Control, 48 (10), 17681772 (2003).
10. Wang, C., “Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs,” Automatica, 44 (3), 816822 (2008).
11. Chen, C. Y., Li, T. H. S., Yeh, Y. C. and Chang, C. C., “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, 19 (2), 156166 (2009).
12. Matins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M. and Bastosfilho, T. F., “An adaptive dynamic controller for autonomous mobile robot trajectory tracking,” Control Eng. Pract. 16 (11), 13541363 (2008).
13. Yang, E., Gu, D., Mita, T. and Hu, H., “Nonlinear Tracking Control of a Car-Like Mobile Robot Via Dynamic Feedback Linearization,” Proceeding of Control Conference, Bath, United Kingdom (2004).
14. Chen, C.-Y., Li, T.-H. S., Yeh, Y.-C. and Chang, C.-C., “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, 19 (2), 156166 (2009).
15. Huang, J., Wen, C., Wang, W. and Jiang, Z.-P., “Adaptive output feedback tracking of a nonholonomic mobile robot,” Automatica, 50 (3), 821831 (2014).
16. Chwa, D., “Fuzzy adaptive tracking control of wheeled robots with stat-dependent kinematic and dynamic disturbances,” IEEE Trans. Fuzzy Syst. 20 (3), 587593 (2012).
17. McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9 (2), 6282 (1990).
18. Wichlund, K. Y., Sørdalen, O. J. and Egeland, O., “Control of Vehicles with Second-Order Nonholonomic Constraints: Underactuated Vehicles,” Proceedings of the European Control Conference, Rome, Italy (1995) pp. 3086–3091.
19. Spong, M. W., “Modeling and control of elastic joint robots,” Trans. ASME, J. Dyn. Syst. Meas. Control, 109, 310319 (Dec. 1987).
20. Spong, M. W., “Underactuated Mechanical Systems,” Proceedings of the Control Problems in Robotics and Automation (Springer, Berlin Heidelberg, 1998) pp. 135–150.
21. Yue, M., Hu, P. and Sun, W., “Path following of a class of non-holinomic mobile robot with underactuated vehicle bod,” IET Control Theory & Appl. 4 (10), 18981904 (2010).
22. Oryschuk, P., Salerno, A., Al-, A. M.Husseini and Angeles, J., “Experimental validation of an underactuated two-wheeled mobile robot,” IEE/ASME Trans. Mechatronics, 14 (2), 252257 (2009).
23. Khanpoor, A., Khalaji, A. K. and Moosavian, S. A. A., “Dynamics Modeling and Control of a Wheeled Mobile Robot with Omni-Directional Trailer,” 22nd Iranian Conference on, Electrical Engineering (ICEE), Tehran, Iran (2014) pp. 1254–1259.
24. Khalaji, A. K. and Moosavian, S. A. A., “Robust adaptive controller for a Tractor-Trailer mobile robot,” IEEE/ASME Trans. Mechatronics, 19 (3), 943953 (2014).
25. Khalaji, A. K. and Moosavian, S. A. A., “Adaptive sliding mode control of a wheeled mobile robot towing a trailer,” Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 229 (2), 169183 (2015).
26. Khalaji, A. K., Bidgoli, M. R. and Moosavian, S. A. A., “Non-Model Based Control for a Wheeled Mobile Robot Towing Two Trailers,” Proceeding of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 229 (1), 97108 (2014).
27. Hangos, K. M., Bokor, J. and Szederkenyi, G., Analysis and Control of Nonlinear Process Systems (Springer Science & Business Media, London, 2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed