Skip to main content Accessibility help
×
Home

Inverse kinematic solutions of 6-D.O.F. biopolymer segments

  • Jin Seob Kim (a1) and Gregory S. Chirikjian (a1)

Summary

We present two methods to find all the possible conformations of short six degree-of-freedom segments of biopolymers which satisfy end constraints in position and orientation. One of our methods is motivated by inverse kinematic solution techniques which have been developed for “general” 6R serial robotic manipulators. However, conventional robot kinematics methods are not directly applicable to the geometry of polymers, which can be treated as a degenerate case where all the “link lengths” are zero. Here, we propose a method which extends the elimination method of Kohli and Osvatic. This method can be applied directly to the geometry of biopolymers. We also propose a heuristic method based on a Lie-group-theoretic description. In this method, we utilize inverse iterations of the Jacobian matrix to obtain all conformations which satisfy end constraints. This can be easily implemented for both the general 6R manipulator and polymers. Although the extended elimination method is computationally faster than the Jacobian method, in cases where some of the joint angles are 180° (i.e., where the elimination method fails), we combine these two methods effectively to obtain the full set of inverse kinematic solutions. We demonstrate our approach with several numerical examples.

Copyright

Corresponding author

*Corresponding author. E-mail: gregc@jhu.edu

References

Hide All
1. Favrin, G., Irbäck, A. and Sjunnesson, F., “Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space,” J. Chem. Phys. 114, 81548158 (2001).
2. Ulmschneider, J. P. and Jorgensen, W. L., “Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias,” J. Chem. Phys. 118, 42614271 (2003).
3. Ulmschneider, J. P. and Jorgensen, W. L., “Monte Carlo backbone sampling for nucleic acids using concerted rotations including variable bond angles,” J. Phys. Chem. 108 (43), 1688316892 (2004).
4. Frenkel, D. and Smit, B., Understanding Molecular Simulation (Academic Press, San Diego, 2002).
5. , N. and Scheraga, H. A., “Ring closure and local conformational deformations of chain molecules,” Macromolecules 3, 178187 (1970).
6. , N. and Scheraga, H. A., “Ring closure in chain molecules with Cn , I, or S 2n symmetry,” Macromolecules 6, 273281 (1973).
7. , N. and Scheraga, H. A., “Calculation of the conformation of cyclo-hexaglycyl,” Macromolecules 6, 525535 (1973).
8. Dodd, L., Boone, T. and Theodorou, D., “A concerted rotation algorithm for atomistic Monte Carlo simulations of polymer melts and glasses,” Mol. Phys. 78, 961996 (1993).
9. Knapp, E., “Long time dynamics of a polymer with rigid body monomer units relating to a protein model: Comparison with the Rouse model,” J. Comput. Chem. 13, 793798 (1992).
10. Knapp, E. and Irgens-Defregger, A., “Off-lattice Monte Carlo method with constraints: Long-time dynamics of a protein model without nonbonded interactions,” J. Comput. Chem. 14, 1929 (1993).
11. Coutsias, E. A., Seok, C., Jacobson, M. P. and Dill, K. A., “A kinematic view of loop closure,” J. Comput. Chem. 25, 510528 (2004).
12. Mak, C. H., “RNA conformational sampling: 1. Single-nucleotide loop closure,” J. Comput. Chem. 29, 926933 (2008).
13. Mak, C. H., Chung, W-Y. and Markovskiy, N. D., “RNA conformational sampling II: Arbitrary length multinucleotide loop closure,” J. Chem. Theory Comput. 7, 11981207 (2011).
14. Wedemeyer, W. and Scheraga, H. A., “Exact analytical loop closure in prsotein using polynomial equations,” J. Comput. Chem. 20, 819844 (1999).
15. Lee, H. and Liang, C., “A new vector theory for the analysis of spatial mechanism,” Mech. Mach. Theory 23, 209217 (1988).
16. Lee, H. and Liang, C., “Displacement analysis of the general spatial 7-link 7R mechanism,” Mech. Mach. Theory 23, 219226 (1988).
17. Manocha, D. and Canny, J., “Efficient inverse kinematics for general 6R manipulators,” IEEE Trans. Robot. Autom. 10, 648657 (1994).
18. Wu, M. G. and Deem, M. W., “Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides,” J. Chem. Phys. 111, 66256632 (1999).
19. Duffy, J. and Crane, C., “A displacement analysis of the general spatial 7R mechanisms,” Mech. Mach. Theory 15, 153169 (1980).
20. Tsai, L-W. and Morgan, A., “Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods,” ASME J. Mech. Transm. Autom. Des. 107, 189200 (1985).
21. Manseur, R. and Doty, K. L., “A robot manipulator with 16 real inverse kinematic solution sets,” Int. J. Robot. Res. 8 (5), 7579 (1989).
22. Wampler, C. and Morgan, A., “Solving the 6R inverse position problem using a generic-case solution methodology,” Mech. Mach. Theory 26 (1), 91106 (1991).
23. Raghavan, M. and Roth, B., “Kinematic analysis of the 6R manipulator of general geometry,” In: Proceedings of the 5th International Symposium on Robotics Research (Miura, H. and Airmoto, S., eds.) (MIT Press, Cambridge, MA, 1990) pp. 263270.
24. Raghavan, M. and Roth, B., “Kinematic analysis of the 6R manipulator and related linkages,” ASME J. Mech. Des. 115, 502508 (1993).
25. Manocha, D., Zhu, Y. and Wright, W., “Conformational analysis of molecular chains using nano-kinematics,” Comput. Appl. Biosci. 11, 7186 (1995).
26. Kohli, D. and Osvatic, M., “Inverse kinematics of the general 6R and 5R, P serial manipulators,” ASME J. Mech. Des. 115, 922931 (1993).
27. Ghazvini, M., “Reducing the Inverse Kinematics of Manipulators to the Solution of a Generalized Eigenproblem,” In: Computational Kimematics (Angeles, J., et al., ed.) (Kluwer Academic Publishers, Springer, Netherlands, 1993) pp. 1526.
28. Nielson, J. and Roth, B., “On the kinematic analysis of robotic mechanisms,” Int. J. Robot. Res. 12 (12), 11471160 (1999).
29. Husty, M. L., Pfurner, M. and Schröcker, H-P., “A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator,” Mech. Mach. Theory 42 (1), 6681 (2007).
30. Rudny, T., “Solving inverse kinematics by fully automated planar curves intersecting,” Mech. Mach. Theory 74, 310318 (2014).
31. Spong, M. and Vidyasagar, M., Robot Dynamics and Control (John Wiley and Sons, New York, 1989).
32. Golub, G. and Van Loan, C., Matrix Computations (The Johns Hopkins University Press, Baltimore, 1996).
33. Anderson, E. et al., LAPACK User's Guide (SIAM, Philadelphia, PA, 1999).
34. McCarthy, M., An Introduction to Theoretical Kinematics (MIT Press, Cambridge, MA, 1990).
35. Murray, M., Li, Z. and Sastry, S., A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994).
36. Chirikjian, G. S. and Kyatkin, A. B., Engineering Applications of Noncommutative Harmonic Analysis (CRC Press, Boca Raton, FL, 2001).
37. Sommese, A. J. and Wampler, C. W., The Numerical Solution to Systems of Polynomials Arising in Engineering and Science (World Scientific, Singapore, 1985).
38. Morgan, A., Solving Polynomial Systems Using Contiuation For Engineering and Scientific Problems (Prentice-Hall, New Jersey, 1987).
39. Ebert-Uphoff, I. and Chirikjian, G. S., “Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities,” Proceedings of the IEEE International Conference on Robotics and Automation (Minneapolis, MN, 1996) pp. 139–145.
40. Chirikjian, G. S., “Inverse kinematics of binary manipulators using a continuum model,” J. Intell. Robot. Syst. 19, 522 (1997).
41. Suthakorn, J. and Chirikjian, G. S., “A new inverse kinematics algorithm for binary manipulators with many actuators,” Adv. Robot. 15 (2), 225244 (2001).
42. Wang, Y. and Chirikjian, G. S., “Workspace generation of hyper-redundant manipulators as a diffusion process on SE(N),” IEEE Trans. Robot. Autom. 20 (3), 399408 (2004).
43. Kyatkin, A. B. and Chirikjian, G. S., “Computation of robot configuration and workspaces via the fourier transform on the discrete motion group,” Int. J. Robot. Res. 18 (6), 601615 (1999).
44. Wang, Y., “A fast workspace-density-driven inverse kinematics method for hyper-redundant manipulators,” Robotica 24, 649655 (2006).
45. Chirikjian, G. S., “Conformational statistics of macromolecules using generalized convolution,” Comput. Theor. Polym. Sci. 11, 143153 (2001).
46. Kim, J. S. and Chirikjian, G. S., “A unified approach to conformational statistics of classical polymer and polypeptide models,” Polymer 46, 1190411917 (2005).
47. Whitney, D., “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans. Man-Mach. Syst. MMS–10 (2), 4753 (1969).
48. Uicker, J., Denavit, J. and Hartenberg, R., “An iterative method for the displacement analysis of spatial mechanisms,” ASME J. Appl. Mech. 107, 189200 (1954).
49. Isobe, T., Nagasaka, K. and Yamamoto, S., “A new approach to kinematic control of simple manipulators,” IEEE Trans. Syst. Man Cybern. 22 (5), 11161124 (1992).
50. Wang, L. and Chen, C., “A combined optimization method for solving inverse kinematics problem of mechanical manipulators,” IEEE Trans. Robot. Autom. 7 (4), 489499 (1991).
51. Olsen, A. L. and Petersen, H. G., “Inverse kinematics by numerical and analytical cyclic coordinate descent,” Robotica 29 (4), 619626 (2011).
52. Canutescu, A. and Dunbrack, R., “Cyclic coordinate descent: A robotic algorithm for protein loop closure,” Protein Sci. 12, 963972 (2003).
53. Boomsma, W. and Hamelryck, T., “Full cyclic coordinate descent: Solving the protein loop closure problem in C α space,” BMS Bioinformatics 6, 159 (2005).
54. Al-Nasr, K. and He, J., “An effective convergence independent loop closure method using forward-backward cyclic coordinate descent,” Int. J. Data Min. Bioinformatics 3 (3), 346361 (2009).
55. Kim, J. S. and Chirikjian, G. S., “Conformational analysis of stiff chiral polymers with end-constraints,” Mol. Simul. 32 (14), 11391154 (2006).
56. Park, F. C., “Distance metrics on the rigid-body motions with applications to mechanism design,” J. Mech. Des. 117, 4854 (1995).
57. Chirikjian, G. S. and Zhou, S., “Metrics on motion and deformation of solid models,” J. Mech. Des. 120 (2), 252261 (1998).
58. Chirikjian, G. S. and Yan, Y., “Mathematical aspects of molecular replacement. II. Geometry of motion spaces,” Acta Cryst. A68, 208221 (2012).
59. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Molecular Biology of the Cell (Garland Science, New York, 2000).
60. Ulmschneider, J. P. and Jorgensen, W. L., “Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation,” J. Am. Chem. Soc. 126, 18491857 (2004).
61. Ulmschneider, J. P. and Jorgensen, W. L., “Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations,” J. Phys. Chem. B 110, 1673316742 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed