Skip to main content Accessibility help

Intelligent Hybridization of Regression Technique with Genetic Algorithm for Navigation of Humanoids in Complex Environments

  • Priyadarshi Biplab Kumar (a1) and Dayal R. Parhi (a1)


In the current investigation, a novel navigational controller has been designed and implemented for humanoids in cluttered environments. Here, regression analysis is hybridized with genetic algorithm (GA) for designing the controller. The obstacle distances collected in the form of sensor outputs are initially fed to the regression controller; and based on the previous training pattern data, an intermediate advancing angle (AA) is obtained as the first output. The intermediate AA obtained from the regression controller along with other inputs is again fed to the GA controller, which generates the final AA as the desired final output to avoid the obstacles present in a complex environment and reach the destination successfully. The working of the controller is tested on a V-REP simulation platform. In the current work, navigation of both single as well as multiple humanoids has been attempted. To avoid inter-collision among multiple humanoids during their navigation in a common platform, a Petri-Net model has been proposed. The simulation results are validated through a real-time experimental platform developed under laboratory conditions. The results obtained from both the simulation and experimental platforms are compared against each other and are found to be in good agreement with acceptable percentage of errors. Finally, the proposed controller is also compared with other existing navigational controller and an improvement in performance has been observed.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Atkinson, A. C., “Robust and diagnostic regression analyses,” Commun. Stat. Theory Methods 11(22), 25592571 (1982).
2.Frank, B., Stachniss, C., Abdo, N. and Burgard, W., “Using Gaussian Process Regression for Efficient Motion Planning in Environments with Deformable Objects,” Proceedings of the 9th AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, San Francisco, USA (2011) pp. 27.
3.Frank, B., Stachniss, C., Abdo, N. and Burgard, W., “Efficient Motion Planning for Manipulation Robots in Environments with Deformable Objects,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, USA, IEEE (2011) pp. 21802185.
4.Qi, N., Ma, B., Liu, X. E., Zhang, Z. and Ren, D., “A Modified Artificial Potential Field Algorithm for Mobile Robot Path Planning,” 7th World Congress on Intelligent Control and Automation, Chongqing, China, IEEE (2008) pp. 26032607.
5.Lee, Y. J. and Bien, Z., “Path planning for a quadruped robot: an artificial field approach,” Adv. Robot. 16(7), 609627 (2002).
6.Kim, E., Choi, S. and Oh, S.Structured kernel subspace learning for autonomous robot navigation,” Sensors 18(2), 582 (2018).
7.Dirik, M., “Collision-free mobile robot navigation using fuzzy logic approach,” Int. J. Comput. Appl. 179(9), 3339 (2018).
8.Keshmiri, S. and Payandeh, S., “Multi-robots, Multi-locations Recharging Paradigm: A Regression Route Technique,” Proceedings of the 14th IASTED International Conference, Robotics and Applications, Cambridge, MA, USA (2009) pp. 160165.
9.Keshmiri, S. and Payandeh, S., “Regression analysis of multi-rendezvous recharging route in multi-robot environment,” Int. J. Soc. Robot. 4(1), 1527 (2012).
10.Li, G., Yamashita, A., Asama, H. and Tamura, Y., “An Efficient Improved Artificial Potential Field Based Regression Search Method for Robot Path Planning,” 2012 International Conference on Mechatronics and Automation (ICMA), Chengdu, Sichuan, China, IEEE (2012), pp. 12271232.
11.Li, G., Tamura, Y., Yamashita, A. and Asama, H., “Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning,” Int. J. Mechatron. Autom. 3(3), 141170 (2013).
12.Lazaro, J. L., Gardel, A., Mataix, C., Rodriguez, F. J. and Martin, E., “Adaptive Workspace Modeling, Using Regression Methods, and Path Planning to the Alternative Guide of Mobile Robots in Environments with Obstacles,” 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation, Barcelona, Spain, IEEE, vol. 1 (1999) pp. 529534.
13.Dongre, V. and Raikwal, J., “An improved user browsing behavior prediction using regression analysis on Web Logs,” Int. J. Comput. Appl. 120(19), 1923 (2015).
14.Kumar, P. B., Sahu, C. and R. Parhi, D., “A hybridized regression-adaptive ant colony optimization approach for navigation of humanoids in a cluttered environment,” Appl. Soft Comput. 68, 565585 (2018).
15.Kumar, P. B., Mohapatra, S. and R. Parhi, D., “An intelligent navigation of humanoid NAO in the light of classical approach and computational intelligence,” Comput. Animat. Virt. Worlds 30(12), e1858 (2018).
16.Kumar, P. B., Sahu, C., Parhi, D. R., Pandey, K. K. and Chhotray, A., “Static and dynamic path planning of humanoids using an advanced regression controller,” Sci. Iran. 26(1), 375393 (2019).
17.Kumar, P. B., Sethy, M. and R. Parhi, D., “An intelligent computer vision integrated regression based navigation approach for humanoids in a cluttered environment,” Multimedia Tools Appl. 124 (2018).
18.Al, S., Dülger, L. C. and Kirecci, A., “Hybrid actuator: Motion control using genetic algorithms,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 223(7), 16571665 (2009).
19.Wang, S., Lu, Z., Wei, L., Ji, G. and Yang, J., “Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem,” Simulation 92(7), 601616 (2016).
20.Nagib, G. and Gharieb, W., “Path Planning for a Mobile Robot Using Genetic Algorithms,” International Conference on Electrical, Electronic and Computer Engineering, Cairo, Egypt (2004) pp. 185189.
21.Raouf, N. and Pourtakdoust, S. H., “Launch vehicle multi-objective reliability-redundancy optimization using a hybrid genetic algorithm-particle swarm optimization,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 229(10), 17851797 (2015).
22.Saraswathi, M., Murali, G. B. and Deepak, B. B. V. L., “Optimal path planning of mobile robot using hybrid cuckoo search-bat algorithm,” Procedia Comput. Sci. 133, 510517 (2018).
23.Singh, N. H. and Thongam, K., “Mobile robot navigation using fuzzy logic in static environments,” Procedia Comput. Sci. 125, 1117 (2018).
24.Zhang, X., Zhao, Y., Deng, N. and Guo, K., “Dynamic path planning algorithm for a mobile robot based on visible space and an improved genetic algorithm,” Int. J. Adv. Robot. Syst. 13(3), 91 (2016).
25.Tuncer, A. and Yildirim, M., “Dynamic path planning of mobile robots with improved genetic algorithm,” Comput. Electr. Eng. 38(6), 15641572 (2012).
26.Allaire, F. C., Tarbouchi, M., Labonté, G. and Fusina, G., “FPGA Implementation of Genetic Algorithm for UAV Real-Time Path Planning,” In: Unmanned Aircraft Systems (Springer, Dordrecht, 2008) pp. 495510.
27.Hu, L., Gu, Z. Q., Huang, J., Yang, Y. and Song, X., “Research and realization of optimum route planning in vehicle navigation systems based on a hybrid genetic algorithm,” Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 222(5), 757763 (2008).
28.Elshamli, A., Abdullah, H. A. and Areibi, S., “Genetic Algorithm for Dynamic Path Planning,” Canadian Conference on Electrical and Computer Engineering, Ontario, Canada, IEEE, vol. 2 (2004) pp. 677680.
29.Kwaśniewski, K. K. and Gosiewski, Z., “Genetic algorithm for mobile robot route planning with obstacle avoidance,” Acta Mech. Autom. 12(2), 151159 (2018).
30.Lamini, C., Benhlima, S. and Elbekri, A., “Genetic algorithm based approach for autonomous mobile robot path planning,” Procedia Comput. Sci. 127, 180189 (2018).
31.Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O. and Bouzouia, B., “Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control,” Robot. Autonomous Syst. 89, 95109 (2017).
32.Silva Arantes, J. D., Silva Arantes, M. D., Motta Toledo, C. F., Júnior, O. T. and Williams, B. C., “Heuristic and genetic algorithm approaches for UAV path planning under critical situation,” Int. J. Artif. Intell. Tools 26(01), 1760008 (2017).
33.Meléndez, A., Castillo, O., Valdez, F., Soria, J. and Garcia, M., “Optimal design of the fuzzy navigation system for a mobile robot using evolutionary algorithms,” Int. J. Adv. Robot. Syst. 10(2), 139 (2013).
34.Hartjes, S. and Visser, H. G., “Efficient trajectory parameterization for environmental optimization of departure flight paths using a genetic algorithm,” Part G: J. Aerospace Eng. 231(6), 11151123 (2017).
35.Sachin, M. U. and Gaonkar, P., “Design, implementation and control of a humanoid robot for obstacle avoidance using 8051 Microcontroller,” IOSR J. Electron. Commun. Eng. 5(5), 4050 (2013).
36.Kim, J. Y., Park, I. W. and Oh, J. H., “Walking control algorithm of biped humanoid robot on uneven and inclined floor,” J. Intell. Robot. Syst. 48(4), 457484 (2007).
37.Hereid, A., Cousineau, E. A., Hubicki, C. M. and Ames, A. D., “3D Dynamic Walking with Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics,” 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, IEEE (2016), pp. 14471454.
38.Baskoro, A. S. and Priyono, M. G., “Design of Humanoid Robot Stable Walking Using Inverse Kinematics and Zero Moment Point,” 2016 International Electronics Symposium (IES), Denpasar, Indonesia, IEEE (2016), pp. 335339.
39.Lin, C. Y., Lee, K. F., Wang, H. C., Kuo, P. H., Ho, Y. F. and Li, T. H. S., “Design and Implementation of 3-DOF Dynamic Balancing Waist and Its Fuzzy Control for Adult-Sized Humanoid Robot,” 2014 Proceedings of the SICE Annual Conference (SICE), Sapporo, Japan, IEEE (2014), pp. 21332138.
40.Inomata, K. and Uchimura, Y., “3DZMP-Based Control of a Humanoid Robot with Reaction Forces at 3-Dimensional Contact Points,” 2010 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Niigata, IEEE (2010), pp. 402407.
41.Kofinas, N., Orfanoudakis, E. and G., M. Lagoudakis, “Complete Analytical Inverse Kinematics for NAO,” 13th International Conference on Autonomous Robot Systems (Robotica), Lisbon, Portugal (2013) pp. 16.
42.Peterson, J. L., Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs, 1981).
43.Pham, D. T. and Parhi, D. R., “Navigation of multiple mobile robots using a neural network and a Petri Net model,” Robotica 21(1), 7993 (2003).


Intelligent Hybridization of Regression Technique with Genetic Algorithm for Navigation of Humanoids in Complex Environments

  • Priyadarshi Biplab Kumar (a1) and Dayal R. Parhi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.