Skip to main content Accessibility help

In-hand forward and inverse kinematics with rolling contact

  • Lei Cui (a1), Jie Sun (a2) and Jian S. Dai (a2)


Robotic hands use rolling contact to manipulate a grasped object to a desired location, even when the finger and the palm linkage mechanisms lack degrees of freedom. This paper presents a systematic approach to the forward and inverse kinematics of in-hand manipulation. The moving frame method in differential geometry is integrated into the product of exponential formula to establish a pure geometric framework of the kinematics of a robot hand. The forward and inverse kinematics of a multifingered hand are obtained in terms of the joint rates and contact trajectories. A two-fingered planar robot hand and a three-fingered spatial robot hand are used to demonstrate the proposed approach. The proposed formulation amounts to solving a univariate polynomial, providing an alternative to the existing ones that require numerical integration.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Yousef, H., Boukallel, M. and Althoefer, K., “Tactile sensing for dexterous in-hand manipulation in robotics—a review,” Sensors Actuators A: Phys. 167 (2), 171187 (2011).
2. Sudsang, A. and Phoka, T., “Regrasp Planning for a 4-Fingered Hand Manipulating a Polygon,” Proceedings of the IEEE International Conference on Robotics and Automation, 2003, ICRA'03, Taibei, Taiwan (Sep. 14–19, 2003) pp. 26712676.
3. Dafle, N. C., Rodriguez, A., Paolini, R., Tang, B., Srinivasa, S. S., Erdmann, M., Mason, M. T., Lundberg, I., Staab, H. and Fuhlbrigge, T., “Extrinsic Dexterity: In-Hand Manipulation with External Forces,” 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China (May 31–Jun. 7, 2014) pp. 15781585.
4. Furukawa, N., Namiki, A., Taku, S. and Ishikawa, M., “Dynamic Regrasping using a High-Speed Multifingered Hand and a High-Speed Vision System,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006, Orlando, FL, USA (May 15–19, 2006) pp. 181187.
5. Cherif, M. and Gupta, K. K., “3D in-Hand Manipulation Planning,” Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1998, vol. 141, Victoria, British Columbia, Canada (Oct. 13–17, 1998) pp. 146151.
6. Kondo, M., Ueda, J. and Ogasawara, T., “Recognition of in-hand manipulation using contact state transition for multifingered robot hand control,” Robot. Auton. Syst. 56 (1), 6681 (2008).
7. Rus, D., “In-hand dexterous manipulation of piecewise-smooth 3-D objects,” Int. J. Robot. Res. 18 (4), 355381 (1999).
8. Sudsang, A. and Srinivasa, N., “Grasping and in-hand manipulation: Geometry and algorithms,” Algorithmica 26 (3–4), 466493 (2000).
9. Ueda, J., Kondo, M. and Ogasawara, T., “The multifingered NAIST hand system for robot in-hand manipulation,” Mech. Mach. Theory 45 (2), 224238 (2010).
10. Exner, C., “Development of hand functions,” In: Occupational therapy for children (Pratt, P. N. and Allen, A. S., eds.), (Mosby, St. Louis, 1989) pp. 235259.
11. Pehoski, C., Henderson, A. and Tickle-Degnen, L., “In-hand manipulation in young children: Rotation of an object in the fingers,” Am. J. Occup. Therapy 51 (7), 544552 (1997).
12. Jeong, H. and Cheong, J., “In-Hand Rolling Motion Planning using Independent Contact Region (ICR) with Guaranteed Grasp Quality Margin,” 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (May 6–10, 2013) pp. 32393244.
13. Kim, Y. B., Kang, G., Yee, G. K., Kim, A., You, W. S., Lee, Y. H., Liu, F., Moon, H., Koo, J. C. and Choi, H. R., “Exploration and reconstruction of unknown object by active touch of robot hand,” Intell. Service Robot. 8 (3), 141149 (2015).
14. Reis, M. F., Leite, A. C., Lizarralde, F. and Hsu, L., “Kinematic Modeling and Control Design of a Multifingered Robot Hand,” 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Rio de Janeiro, Brazil (Jun. 3–5, 2015) pp. 638643.
15. van Hoof, H., Hermans, T., Neumann, G. and Peters, J., “Learning Robot in-Hand Manipulation with Tactile Features,” 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea (South) (Nov. 3–5, 2015) pp. 121127.
16. Doulgeri, Z. and Droukas, L., “On Rolling Contact Motion by Robotic Fingers Via Prescribed Performance Control,” 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (May 6–10, 2013) pp. 39763981.
17. Droukas, L. and Doulgeri, Z., “Rolling contact motion generation and control of robotic fingers,” J. Intell. Robot. Syst. 1, 118 (2015).
18. Cui, L. and Dai, J. S., “A Coordinate-Free Approach to Instantaneous Kinematics of Two Rigid Objects with Rolling Contact and Its Implications for Trajectory Planning,” IEEE International Conference on Robotics and Automation, Kobe, Japan (May 12–17, 2009) pp. 612617.
19. Cui, L. and Dai, J. S., “A darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact,” IEEE Trans. Robot. 26 (2), 383388 (2010).
20. Cui, L. and Dai, J. S., In: Geometric Kinematics of Point Contact (Lenarčič, J. and Stanisic, M. M., eds.) (Springer, New York, US, 2010) pp. 429436.
21. Cui, L. and Dai, J. S., “A polynomial formulation of inverse kinematics of rolling contact,” J. Mech. Robot. 7 (4), 041003_041001–041009 (2015).
22. Cui, L. and Dai, J. S., “From sliding–rolling loci to instantaneous kinematics: An adjoint approach,” Mech. Mach. Theory 85 (0), 161171 (2015).
23. Cai, C. and Roth, B., “On the planar motion of rigid bodies with point contact,” Mech. Mach. Theory 21 (6), 453466 (1986).
24. Montana, D. J., “The kinematics of contact and grasp,” Int. J. Robot. Res. 7 (3), 1732 (1988).
25. Marigo, A. and Bicchi, A., “Rolling bodies with regular surface: Controllability theory and application,” IEEE Trans. Autom. Control 45 (9), 15861599 (2000).
26. Cui, L., “Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands,” In: Centre for Robotics Research (King's College London, London, UK, 2010).
27. Hwang, C. S., Takano, M. and Sasaki, K., “Kinematics of grasping and manipulation of a B-spline surface object by a multifingered robot hand,” J. Robot. Syst. 16 (8), 445460 (1999).
28. Trinkle, J. C. and Paul, R. P., “Planning for dexterous manipulation with sliding contacts,” Int. J. Robot. Res. 9 (3), 2448 (1990).
29. Kao, I. and Cutkosky, M. R., “Quasistatic manipulation with compliance and sliding,” Int. J. Robot. Res. 11 (1), 2040 (1992).
30. Vatani, M., Engeberg, E. D. and Choi, J.-W., “Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology,” Smart Mater. Struct. 23 (9), 095008 (2014).
31. Vatani, M., Engeberg, E. D. and Choi, J.-W., “Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites,” Sensors Actuators A: Phys. 195, 9097 (2013).
32. Okamura, A. M., Smaby, N. and Cutkosky, M. R., “An Overview of Dexterous Manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, 2000, ICRA '00, vol. 251, San Francisco, CA, USA (Apr. 24–28, 2000) pp. 255262.
33. Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, USA, 1994).
34. Park, F. C. and Brockett, R. W., “Kinematic dexterity of robotic mechanisms,” Int. J. Robot. Res. 13 (1), 115 (1994).
35. Brockett, R. W., Robotic Manipulators and the Product of Exponentials Formula (Springer, Berlin, 1984).
36. Romdhane, L. and Duffy, J., “Kinestatic analysis of multifingered hands,” Int. J. Robot. Res. 9 (6), 318 (1990).
37. Cui, L. and Dai, J. S., “Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm ASME,” J. Mech. Robot. 3 (2), 021001_021001–021007 (2011).
38. Cui, L. and Dai, J. S., “Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand ASME,” J. Mech. Robot. 4 (3), 034502_034501_034506 (2012).
39. Cui, L., Cupcic, U. and Dai, J. S., “An optimization approach to teleoperation of the thumb of a humanoid robot hand: Kinematic mapping and calibration,” J. Mech. Des. 136 (9), 091005_091001_091007 (2014).
40. Cui, L., Tan, T., Do, K. D. and Teunissen, P., “Challenges and solutions for autonomous robotic mobile manipulation for outdoor sample collection,” J. Electr. Electron. Eng. 3 (5), 156164 (2015).
41. Cartan, E., Riemannian Geometry in an Orthogonal Frame (World Scientific Press, Singapore, 2002).
42. Cartan, H., Differential Forms (Dover Publisher, New York, 1996).
43. Carmo, M. P., Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, 1976).
44. Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC Press, Inc., Boca Raton, Florida, 1996).
45. Wei, G., Sun, J., Zhang, X., Pensky, D., Piater, J. and Dai, J. S., “Metamorphic Hand based Grasp Constraint and Affordance,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Boston, Massachusetts, US (Aug. 2–5, 2015) pp. V05BT08A008–V005BT008A008.
46. Dai, J. S. and Kerr, D. R., “Analysis of force distribution in grasps using augmentation,” J. Mech. Eng. Sci. 210 (1), 1522 (1996).
47. Dai, J. S. and Rees Jones, J., “Interrelationship between screw systems and corresponding reciprocal systems and applications,” Mech. Mach. Theory 36 (5), 633651 (2001).
48. Dai, J. S., Wang, D. and Cui, L., “Orientation and workspace analysis of the multifingered metamorphic hand-metahand,” IEEE Trans. Robot. 25 (4), 942947 (2009).
49. Mason, M. T., Mechanics of Robotic Manipulation (MIT Press, Cambridge, Massachusetts, 2001).
50. Trinkle, J. C., “A Quasi-Static Analysis of Dextrous Manipulation with Sliding and Rolling Contacts,” Proceedings of the 1989 IEEE International Conference on Robotics and Automation, 1989, (1989) pp. 788–793.
51. Cherif, M. and Gupta, K. K., “Planning quasi-static fingertip manipulations for reconfiguring objects,” IEEE Trans. Robot. Autom. 15 (5), 837848 (1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed