Skip to main content Accessibility help
×
Home

Immune-inspired search strategies for robot swarms

  • G. M. Fricke (a1), J. P. Hecker (a1), J. L. Cannon (a2) (a3) and M. E. Moses (a1) (a4) (a5)

Summary

Detection of targets distributed randomly in space is a task common to both robotic and biological systems. Lévy search has previously been used to characterize T cell search in the immune system. We use a robot swarm to evaluate the effectiveness of a Lévy search strategy and map the relationship between search parameters and target configurations. We show that the fractal dimension of the Lévy search which optimizes search efficiency depends strongly on the distribution of targets but only weakly on the number of agents involved in search. Lévy search can therefore be tuned to the target configuration while also being scalable. Implementing search behaviors observed in T cells in a robot swarm provides an effective, adaptable, and scalable swarm robotic search strategy. Additionally, the adaptability and scalability of Lévy search may explain why Lévy-like movement has been observed in T cells in multiple immunological contexts.

Copyright

Corresponding author

*Corresponding author. E-mail: mfricke@cs.unm.edu

References

Hide All
1. Acar, E. U., Choset, H., Zhang, Y. and Schervish, M., “Path planning for robotic demining: Robust sensor-based coverage of unstructured environments and probabilistic methods,” Int. J. Robot. Res. 22 (7–8), 441466 (2003).
2. Ackley, D. H., Cannon, D. C. and Williams, L. R., “A movable architecture for robust spatial computing,” Comput. J. bxs129, Oxford University Press (Oct 11, 2012).
3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).
4. Ariotti, S., Beltman, J. B., Chodaczek, G., Hoekstra, M. E., van Beek, A. E., Gomez-Eerland, R., Ritsma, L., van Rheenen, J., Marée, A. F. M. and Zal, T., “Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen,” Proc. Natl. Acad. Sci. 109 (48), 1973919744 (2012).
5. Banerjee, S., Levin, D., Moses, M., Koster, F. and Forrest, S., “The Value of Inflammatory Signals in Adaptive Immune Responses,” In: Artificial Immune Systems (Liò, P., Nicosia, G. and Stibor, T., eds.) (Springer, 2011) pp. 114.
6. Banigan, E. J., Harris, T. H., Christian, D. A., Hunter, C. A., Liu, A. J. and Asquith, B., “Heterogeneous CD8+ T cell migration in the lymph node in the absence of inflammation revealed by quantitative migration analysis,” PLoS Comput. Biol. 11 (2), e1004058e1004058 (2015).
7. Bartumeus, F., d ALuz, M. G. E., Viswanathan, G. M. and Catalan, J., “Animal search strategies: A quantitative random-walk analysis,” Ecology 86 (11), 30783087 (2005).
8. Beal, J., “Superdiffusive dispersion and mixing of swarms,” ACM Trans. Auton. Adapt. Syst. (TAAS) 10 (2), 10 (2015).
9. Bénichou, O., Loverdo, C., Moreau, M. and Voituriez, R., “Intermittent search strategies,” Rev. Mod. Phys. 83 (1), 81 (2011).
10. Birk, A. and Carpin, S., “Rescue robotics - a crucial milestone on the road to autonomous systems,” Adv. Robot. 20 (5), 595605 (2006).
11. Brambilla, M., Ferrante, E., Birattari, M. and Dorigo, M., “Swarm robotics: A review from the swarm engineering perspective,” Swarm Intell. 7 (1), 141 (2013).
12. Celli, S., Day, M., Müller, A. J., Molina-Paris, C., Lythe, G. and Bousso, P., “How many dendritic cells are required to initiate a T-cell response?Blood 120 (19), 39453948 (2012).
13. De Boer, R. J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R. and Perelson, A. S., “Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus,” J. Virology 75 (22), 1066310669 (2001).
14. Donovan, G. M. and Lythe, G., “T-cell movement on the reticular network,” J. Theor. Biol. 295, 5967 (2012).
15. Edwards, A. M., “Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals,” Ecology 92 (6), 12471257 (2011).
16. Fink, W., Dohm, J. M., Tarbell, M. A., Hare, T. M. and Baker, V. R., “Next-generation robotic planetary reconnaissance missions: A paradigm shift,” Planet. Space Sci. 53 (14), 14191426 (2005).
17. Fricke, G. M., Asperti-Boursin, F., Hecker, J., Cannon, J. and Moses, M., “From Microbiology to Microcontrollers: Robot Search Patterns Inspired by T Cell Movement,” In: Advances in Artificial Life, ECAL, (Liò, P., Miglino, O., Nicosia, G., Nolfi, S. and Pavone, M., eds.) vol. 12 (Sep 2, 2013) pp. 10091016.
18. Fricke, G. M., Letendre, K. A., Moses, M. E. and Cannon, J. L., “Persistence and adaptation in immunity: T cells balance the extent and thoroughness of search,” PLoS Comput. Biol. 12 (3), e1004818 (2016).
19. Fricke, G. M. and Thomas, J. L., “Receptor aggregation by intermembrane interactions: A Monte Carlo study,” Biophys. Chem. 119 (2), 205211 (2006).
20. Gérard, A., Patino-Lopez, G., Beemiller, P., Nambiar, R., Ben-Aissa, K., Liu, Y., Totah, F. J., Tyska, M. J., Shaw, S. and Krummel, M. F., “Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g,” Cell 158 (3), 492505 (2014).
21. Groom, J. R., Richmond, J., Murooka, T. T., Sorensen, E. W., Sung, J. H., Bankert, K., von Andrian, U. H., Moon, J. J., Mempel, T. R. and Luster, A. D., “CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation,” Immunity 37 (6), 10911103 (2012).
22. Harris, T. H., Banigan, E. J., Christian, D. A., Konradt, C., Wojno, E. D. T., Norose, K. and, Wilson, E. H., John, B., Weninger, W., Luster, A. D. and Others “Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells,” Nature 486 (7404), 545548 (2012).
23. Hecker, J. P. and Moses, M. E., “Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm Intell. 9 (1), 4370 (2015).
24. Hecker, J. P., Stolleis, K., Swenson, B., Letendre, K. and Moses, M. E., “Evolving Error Tolerance in Biologically-Inspired iAnt Robots,” Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems (Advances in Artificial Life, ECAL 2013) (Liò, P., Miglino, O., Nicosia, G., Nolfi, S. and Pavone, M., eds.) The MIT Press, Cambridge Mass (2013) pp. 10251032.
25. Hogg, R. V. and Ledolter, J., Engineering Statistics (Macmillan Pub Co, London, England, 1987).
26. Hu, H., Oyekan, J. and Gu, D., “A School of Robotic Fish for Pollution Detection in Port,” In: Biologically Inspired Robotics (Liu, Y. and Sun, D., eds.) Springer Berlin Heidelberg (2011) pp. 85104.
27. Hughes, B. D. Random Walks and Random Environments (Clarendon Press Oxford, 1996).
28. Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., O'Hanlon, B. W. and Kintner, P. M. Jr, “Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer,” Proceedings of the ION GNSS International Technical Meeting of the Satellite Division, vol. 55, Springer-Verlag, Springer (2008) p. 56.
29. Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. and Sims, D. W., “Foraging success of biological Lévy flights recorded in situ,” Proc. Natl. Acad. Sci. 109 (19), 71697174 (2012).
30. Jain, A. K. and Dubes, R. C., “Algorithms for Clustering Data, vol. 6 (Prentice Hall, Englewood Cliffs, 1988).
31. James, A., Plank, M. J. and Edwards, A. M., “Assessing Lévy walks as models of animal foraging,” J. R. Soc. Interface 8 (62), 12331247 (2011).
32. Katada, Y., Nishiguchi, A., Moriwaki, K. and Watakabe, R., “Swarm Robotic Network Using Lévy Flight in Target Detection Problem,” In Proceedings of The 1st International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM2015), Springer, Japan (2015) pp. 310315.
33. Keeter, M., Moore, D., Muller, R., Nieters, E., Flenner, J., Martonosi, S. E., Bertozzi, A. L., Percus, A. G. and Levy, R., “Cooperative search with autonomous vehicles in a 3d aquatic testbed,” In American Control Conference (ACC), IEEE (2012) pp. 31543160.
34. Larralde, H., Trunfio, P., Havlin, S., Stanley, H. E. and Weiss, G. H., “Territory covered by N diffusing particles,” Nature 355 (6359), 423426 (1992).
35. Lerman, K. and Galstyan, A., “Mathematical model of foraging in a group of robots: Effect of interference,” Autonomous Robots 13, no. 2 (Springer US, 2002) pp. 127141.
36. Linderman, J. J., Riggs, T., Pande, M., Miller, M., Marino, S. and Kirschner, D. E., “Characterizing the dynamics of CD4+ T cell priming within a lymph node,” J. Immunology 184 (6), 28732885 (2010).
37. Lindquist, R. L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M. L. and Nussenzweig, M. C., “Visualizing dendritic cell networks in vivo ,” Nature immunology 5 (12), 12431250 (2004).
38. Liu, W., Winfield, A. F. T. and Sa, J., “Modelling Swarm Robotic Systems: A Case Study in Collective Foraging,” Towards Autonomous Robotic Systems (TAROS 07) (2007) pp. 25–32.
39. Love, J., Amai, W., Blada, T., Little, C., Neely, J. and Buerger, S., “The Sandia Architecture for Heterogeneous Unmanned System Control (SAHUC),” Proceedings of the SPIE 9464, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VI. International Society for Optics and Photonics, SPIE (2015) pp. 94640E-94640E.
40. Maier, D. and Kleiner, A., “Improved GPS Sensor Model for Mobile Robots in Urban Terrain,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE (2010) pp. 43854390.
41. Mandelbrot, B. B. The Fractal Geometry of Nature, vol. 173 (W. H. Freeman and Company, Macmillan, 1983).
42. Mårell, A., Ball, J. P. and Hofgaard, A., “Foraging and movement paths of female reindeer: Insights from fractal analysis, correlated random walks, and Lévy flights,” Can. J. Zoology 80 (5), 854865 (2002).
43. Méndez, V., Campos, D. and Bartumeus, F., Stochastic Foundations in Movement Ecology: Anomalous Diffusion, Front Propagation and Random Searches (Springer Science & Business Media, Springer-Verlag Berlin Heidelberg, 2013).
44. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. and Parker, I., “T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node,” Proc. Natl. Acad. Sci. USA 101 (4), 9981003 (2004).
45. Mirsky, H. P., Miller, M. J., Linderman, J. J. and Kirschner, D. E., “Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection,” J. Theor. Biol. 287, 160170 (2011).
46. Montgomery, D. C. Design and Analysis of Experiments, 8th ed. (John Wiley & Sons, 2012).
47. Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S. and Ishiguro, H., “Yuragi-Based Adaptive Searching Behavior in Mobile Robot: From Bacterial Chemotaxis to Lévy Walk,” IEEE International Conference on Robotics and Biomimetics, 2008, ROBIO 2008, IEEE (2009) pp. 806811.
48. Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S. and Ishiguro, H., “From Levy to Brownian: A computational model based on biological fluctuation,” PloS one 6 (2), e16168 (2011).
49. Parker, L., “Path planning and motion coordination in multiple mobile robot teams,” In: Encyclopedia of Complexity and System Science (Meyers, R. A., ed.), Springer, Heidelberg (2009).
50. Potdar, A. A., Jeon, J., Weaver, A. M. and Cummings, P. T., “Cell Migration Paths of Epithelial Cells Resemble Lévy Modulated Correlated Random Walk Pattern,” Proceedings of the 2008 Annual Meeting of the American Institute of Chemical Engineers (2008) https://aiche.confex.com/aiche/2008/techprogram/P127058.HTM.
51. Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marlowe, F. W. and Pontzer, H., “Evidence of Lévy walk foraging patterns in human huntergatherers,” Proc. Natl. Acad. Sci. 111 (2), 728733 (2014).
52. Ramsey, S., “NASA Awards Grant to Manage Swarmathon Challenge (press release) (2015).
53. Raposo, E. P., Bartumeus, F., D ALuz, M. G. E., Ribeiro-Neto, P. J., Souza, T. A. and Viswanathan, G. M., “How landscape heterogeneity frames optimal diffusivity in searching processes,” PLoS Comput. Biol. 7 (11), e1002233 (2011).
54. Sahin, E., “Swarm Robotics: From Sources of Inspiration to Domains of Application,” In: Swarm Robotics (Şahin, E. and Spears, W. M., eds.) (Springer, 2005) pp. 1020.
55. Seshadri, V. and West, B. J., “Fractal dimensionality of Lévy processes,” Proc. Natl. Acad. Sci. USA 79 (14), 4501 (1982).
56. Shlesinger, M. F. and Klafter, J., “Lévy Walks versus Lévy FlightsIn: On Growth and Form (Stanley, H. E. and Ostrowsky, N., eds.) (Springer, 1986) pp. 279283.
57. Stephens, D. W. and Krebs, J. R., Foraging Theory (Princeton University Press, Princeton, New Jersey, 1986).
58. Stolleis, K. A., Hecker, J. P., Montague, G., Leucht, K. and Moses, M. E., “Evolving Autonomous Charging Behavior in a Robot Swarm,” Proceedings of Earth & Space 2016 Engineering for Extreme Environments, Elsevier (2016a).
59. Stolleis, K. A., Hecker, J. P. and Moses, M. E., “The Ant and the Trap: Evolution of Ant-Inspired Obstacle Avoidance in a Multi-Agent System,” Proceedings of Earth & Space 2016 Engineering for Extreme Environments, Elsevier (2016b).
60. Stone, L. D., Theory of Optimal Search (Academic Press, New York, 1975).
61. Sung, J. H., Zhang, H., Moseman, E. A., Alvarez, D., Iannacone, M., Henrickson, S. E., Juan, C., Groom, J. R., Luster, A. D. and von Andrian, U. H., “Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes,” Cell 150 (6), 12491263 (2012).
62. Sutantyo, D., Levi, P., Moslinger, C. and Read, M., “Collective-Adaptive Lévy Flight for Underwater Multi-Robot Exploration,” Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), IEEE (2013) pp. 456462.
63. Sutantyo, D. K., Kernbach, S., Levi, P. and Nepomnyashchikh, V. A., “Multi-Robot Searching Algorithm Using Lévy Flight and Artificial Potential Field,” Proceedings of the IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), IEEE (2010) pp. 16.
64. Tamura, K. and Naruse, K., “Unsmooth Field Sweeping by Balistic Random Walk of Multiple Robots in Unsmooth Terrain,” Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), 15th International Symposium on, IEEE (2014) pp. 585589.
65. Taylor, L. R., “Aggregation, variance and the mean,” Nature 189, 732735 (Mar. 4, 1961).
66. Textor, J., Henrickson, S. E., Mandl, J. N., von Andrian, U. H., Westermann, J., de Boer, R. J. and Beltman, J. B., “Random migration and signal integration promote rapid and robust T cell recruitment,” PLoS Comput. Biol. 10 (8), e1003752.
67. United States Department of DefenseGlobal Positioning System Standard Positioning Service Performance Standard,” SPSGPS, 4th ed. (2008) pp. 915. United States Department of Defense http://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf.
68. Van Dartel, M., Postma, E., van den Herik, J. and de Croon, G., “Macroscopic analysis of robot foraging behaviour,” Connect. Sci. 16 (3), 169181 (2004).
69. Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A. and Stanley, H. E., “Lévy flight search patterns of wandering albatrosses,” Nature 381 (6581), 413415 (1996).
70. Viswanathan, G. M., Buldyrev, S. V., Havlin, S., D ALuz, M. G. E., Raposo, E. P. and Stanley, H. E., “Optimizing the success of random searches,” Nature 401 (6756), 911914 (1999).
71. Von Neumann, J., “The general and logical theory of automata,” Cerebral Mech. Behav. 1, 141 (1951).
72. Weber, T. R., “An Analysis of Lemmings: A Swarming Approach to Mine Countermeasures in the VSW/SZ/BZ,” Technical report, DTIC Document (1995).
73. Winfield, A. F. T., “Foraging Robots,” In: Encyclopedia of Complexity and Systems Science (Meyers, R. A., ed.) (Springer, New York, 2009) pp. 36823700.
74. Winfield, A. F. T., Harper, C. J. and Nembrini, J., “Towards Dependable Swarms and a New Discipline of Swarm Engineering,” In: Swarm Robotics (Şahin, E. and Spear, W. M., eds.) (Springer, 2005) pp. 126142.
75. Zhang, J., Leiderman, K., Pfeiffer, J. R., Wilson, B. S., Oliver, J. M. and Steinberg, S. L., “Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy,” Micron 37 (1), 1434 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed