Skip to main content Accessibility help
×
Home

Gait motion stabilization tuning approach of biped robot based on augmented reality

  • J. Lin (a1), Z. M. Li (a1) and J. Chang (a1)

Summary

Zero moment point (ZMP) is the most popular concept that is applied to stabilize the gait motion of a biped robot. This paper utilizes ZMP with the augmented-reality (AR) method to improve the stability of gait motion of a biped robot. The 3ds Max computer software package is used to build a virtual robot. Under an achieved joint angle data of solid robot to produce an animation of the robot's trajectory, the joint angle data are transmitted to the virtual robot to analyze the offset of the trunk. Furthermore, this investigation adopts AR to allow the user to make direct comparisons between the solid and virtual robot before and after the gait motion is corrected. The animated trajectories of the virtual robot are compared and the relevant data provide feedback to the solid robot to adjust the joint angle and further correct its posture. The experimental results reveal that the proposed scheme can improve gait motion, even when the biped robot is affected by an unexpected loading disturbance. As well as improving the stability of gait motion of a biped robot, the results of this study can also be used to teach the application of the proposed method in a robotics class.

Copyright

Corresponding author

*Corresponding author: E-mail: jlin@uch.edu.tw

References

Hide All
1.Kim, D., Seo, S.-J. and Park, G.-T., “Zero-moment point trajectory modeling of a biped walking robot using an adaptive neuro-fuzzy system,” IEEE Proc.–Contl. Theory Appl. 152 (4), 411426 (2005).
2.Erbatur, F., Okazaki, A., Obiya, K., Takahashi, T. and Kawamura, A., “A Study on the Zero Moment Point Measurement for Biped Walking Robots,” Proceedings of the 7th International Workshop on Advanced Motion Control, Maribor, Slovenia (Jul. 3–5, 2002) pp. 431436.
3.Vukobratović, M. and Juričić, D., “Contribution to the synthesis of biped gait,” IEEE Trans. Bio-Med.Eng. 16 (1), 16 (1969).
4.Chalodhorn, R., MacDorman, K. F. and Asada, M., “Humanoid robot motion recognition and reproduction,” Ad. Rob. 23, 349366 (2009).
5.Vukobratović, M., Frank, A. A. and Juričić, D., “On the stability of biped locomotion,” IEEE Trans. Bio-Med. Eng. 17 (1), 2536 (1970).
6.Sardain, P. and Bessonnet, G., “Forces acting on a biped robot. Center of Pressure-Zero Moment Point,” IEEE Trans. Syst. Man Cybern. Syst. Hum. 34 (5), 630637 (2004).
7.Liu, Z., Zhang, Y. and Wang, Y., “A type-2 fuzzy swithching control system for biped robots,” IEEE Trans. Syst. Man Cybern. Appl. Rev. 37 (6), 12021213 (2007).
8.Furusho, J. and Sano, A., “Sensor-based control of a nine-link biped,” Int. J. Rob. Res. 9 (2), 8398 (1990).
9.Lum, H. K., Zribi, M. and Soh, Y. C., “Planning and control of a biped robot,” Int. J. Eng. Sci, 37 (10), 13191349 (1999).
10.Shih, C. L. and Gruver, W. A., “Control of a biped robot in the double-support phase,” IEEE Trans. Syst. Man Cybern. 22 (4), 729735 (1992).
11.Phuong, N. T., Kim, D. W., Kim, H. K. and Lim, S. B., “An Optimal Control Method for Biped Robot with Stable Walking Gait,” Proceedings of the 2008 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea (Dec. 1–3, 2008) pp. 211218.
12.Zheng, Y. F. and Sias, F. R., “Design and motion control of practical biped robots,” Int. J. Rob. Autom. 3 (2), 7077 (1988).
13.Kajita, S., Yamaura, T. and Kobayashi, A., “Dynamic walking control of a biped robot along a potential energy conserving orbit,” IEEE Trans. Rob. Autom. 8 (4), 431438 (1992).
14.Li, T.-H. S., Su, Y.-T., Kuo, C.-H., Chen, C.-Y., Hsu, C.-L. and Lu, M.-F., “Stair-Climbing Control of Humanoid Robot Using Force and Accelerometer Sensors,” Proceedings of the SICE Annual Conference, Kagawa, Japan (Sep. 17–20, 2007) pp. 21152120.
15.Aoustin, Y. and Formal'sky, A., “On the stabilization of a biped vertical posture in single support using internal torques,” Robotica 23 (1), 6574 (2005).
16.Azevedo, C., Poignet, P. and Espiau, B., “Artificial locomotion control: From human to robots,” Rob. Auton. Syst. 47 (3), 203223 (2004).
17.Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., and Tanie, K., “Planning walking patterns for a biped robot,” IEEE Trans. Rob. Autom. 17 (3), 280289 (2001).
18.Chevallereau, C. and Aoustin, Y., “Optimal reference trajectories for walking and running of a biped robot,” Robotica 19 (5), 557569 (2001).
19.Nenchev, D. N. and Nishio, A., “Ankle and hip strategies for balance recovery of a biped subjected to an impact,” Robotica 26 (5), 643653 (2008).
20.Kajita, S., Morisawa, M., Miura, K., S.I. Nakaoka, Harada, K., Kaneko, K., Kanehiro, F., and Yokoi, K., “Biped Walking Stabilization based on Linear Inverted Pendulum Tracking,” Proceedings of the 2010 IEEE International Conference on Intelligent Robots and Systems, Taipei, Taiwan (Oct. 18–22, 2010) pp. 44894496.
21.Giesler, B., Salb, T., Steinhaus, P. and Dillmann, R., “Using Augmented Reality to Interact with an Autonomous Mobile Platform,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, USA (Apr. 26–May 1, 2004) pp. 10091014.
22.Núũez, P., Bandera, J. P., Pérez-Lorenzo, J. M. and Sandoval, F., “A Human-Robot Interaction System for Navigation Supervision based on Augmented Reality,” IEEE MELECON, Benalmádena (Málaga), Spain (May 16–19, 2006) pp. 441444.
23.Dillmann, R., Becher, R. and Steinhaus, P., “Armar II–-A learning and cooperative multimodal humanoid robot system,” Int. J. Humanoid Rob. 1 (1), 143155 (2004).
24.Nishiyama, T., Hoshino, H., Suzuki, K., Nakajima, R., Sawada, K., and Tachi, S., “Development of surrounded audio-visual display system for humanoid robot control,” Proceedings of the 9$^th$ International Conference of Artificial Reality and Tele-existence (ICAT'99), Tokyo, Japan (Dec. 16–18, 1999) pp. 6067.
26.Fang, H. C., Ong, S. K. and Nee, A.Y.C., “Interactive robot trajectory planning and simulation using Augmented Reality,” Rob. Comput.-Integr. Manuf. 28 (2), 227237 (2012).
27.www.openscenegraph.org (accessed August 3, 2011).
28.Zheng, Y. F. and Hemami, H., “Impact effects of biped contact with the environment,” IEEE Trans. Syst. Man Cybern. SMC-14 (3), 437443 (1984).
29.Lin, J., Chang, J., Lyu, S. M., and Li, Z. M., “Fuzzy stabilization tuning approach for locomotion control of a biped robot”, Int. Rev. Autom. Control (IREACO). 4 (3), 461471 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed