Skip to main content Accessibility help
×
Home

Full formation control for autonomous helicopter groups

  • Farbod Fahimi (a1)

Summary

This paper reports the design of sliding-mode control laws for controlling multiple small-sized autonomous helicopters in arbitrary formations. Two control schemes, which are required for defining arbitrary three-dimensional formation meshes, are discussed. In the presented leader–follower formation control schemes, each helicopter only needs to receive motion information from at most two neighboring helicopters. A nonlinear six-degree-of-freedom dynamic model has been used for each helicopter. Four control inputs, the main and the tail rotor thrusts, and the roll and pitch moments, are assumed. Parameter uncertainty in the dynamic model and wind disturbance are considered in designing the controllers. The effectiveness and robustness of these control laws in the presence of parameter uncertainty in the dynamic model and wind disturbances are demonstrated by computer simulations.

Copyright

Corresponding author

*Corresponding author. E-mail: ffahimi@ualberta.ca

References

Hide All
1.Sugar, T. and Kumar, V., “Decentralized Control of Cooperating Mobile Manipulators,” in Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium (May 1998) pp. 2916–2921.
2.Desai, J. P., “A graph theoretic approach for modeling mobile robot team formations,” J. Robot. Syst. 19 (11), 511525 (2002).
3.Yamaguchi, H., “Cooperative hunting behavior by mobile-robot troops,” Int. J. Robot. Res. 18 (9), 931940 (1999).
4.Sheikholeslam, S. and Desoer, C. A., “Control of interconnected nonlinear dynamical systems: The platoon problem,” IEEE Trans. Autom. Control 37, 806810 Jun. (1992).
5.Wang, P. K. C. and Hadaegh, F. Y., “Coordination and control of multiple microspacecraft moving in formation,” J. Astronaut. Sci. 44 (3), 315355 (1996).
6.Wang, P. K. C., Hadaegh, F. and Lau, K., “Synchronized formation rotation and attitude control of multiple free-flying spacecraft,” AIAA J. Guid. Control Dyn. 22, 2835, Jan. (1999).
7.Hadaegh, F. Y., Lu, W. M. and Wang, P. K. C., “Adaptive Control of Formation Flying Spacecraft for Interferometry,” Large Scale Systems: Theory and applications 1998. Proceedings volume from the 8th IFAC/IFORS/IMAC/IFIP Symposium, 1999, pt. 1, pp. 117–122 vol. 1.
8.Kapila, V., Sparks, A. G., Buffington, J. M. and Yan, Q., “Spacecraft formation flying: Dynamics and control,” J. Guid. Control Dyn. 23, 561564, May–Jun. (2000).
9.Spears, W. M., Spears, D. F. and Heil, R., “A formal analysis of potential energy in a multi-agent system,” Lect. Notes Artif. Intell. (Subser. Lect. Notes Comput. Sci.) 3228, 131145 (2004).
10.Balch, T. and Arkin, R. C., “Behavior-based formation control for multirobot teams,” IEEE Trans. Robot. Autom. 14, 926939, Dec. (1998).
11.Yun, X., Alptekin, G. and Albayrak, O., “Line and circle formation of distributed physical mobile robots,” J. Robot. Syst. 14 (2), 6376 (1997).
12.Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots,” Int. J. Robot. Res. 5 (1), 9099 (1986).
13.McInnes, C. R., “Autonomous ring formation for a planar constellation of satellites,” J. Guid. Control Dyn. 18 (5), 12151217 (1995).
14.Anderson, M. R. and Robbins, A. C., “Formation Flight as a Cooperative Game,” Proceedings of the AIAA Guidance, Navigation, and Control Conferences, AIAA-98-4124, Boston, MA (1998) pp. 244–251.
15.McDowell, P., Chen, J. and Bourgeois, B., “UUV Teams, Control From a Biological Perspective,” Proceedings of the IEEE Oceans Conference Record, Mississippi (2002) 1, pp. 331–337.
16.Ren, W. and Beard, R. W., “Decentralized scheme for spacecraft formation flying via the virtual structure approach,” J. Guid. Control Dyn. 27 (1), 7382 (2004).
17.Lewis, M. A. and Tan, K.-H., “High precision formation control of mobile robots using virtual structures,” Auton. Robots 4, 387403 (1997).
18.Beard, R. W. and Hadaegh, F. Y., “Constellation Templates: An Approach to Autonomous Formation Flying,” Proceedings of the World Automation Congress, Anchorage, AK, (May 1998) pp. 177.1–177.6.
19.Ihue, I. F., Skjetne, R. and Fossen, T. I., “Nonlinear Formation Control of Marine Craft With Experimental Results,” Proceedings of the IEEE Conference on Decision and Control (2004) Nassau, Bahamas 1, pp. 680–685.
20.Eklund, J. M., Sprinkle, J. and Sastry, S., “Implementing and Testing a Nonlinear Model Predictive Tracking Controller for Aerial Pursuit/Evasion Games on a Fixed Wing Aircraft,” Proceedings of the American Control Conference, Portland, OR (2005) 3, pp. 1509–1514.
21.Vidal, R., Rashid, S., Sharp, C., Shakernia, O., Kim, J. and Sastry, S., “Pursuit-Evasion Games With Unmanned Ground and Aerial Vehicles,” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea (2001) 3, pp. 2948–2955.
22.Zelinski, S., Koo, T. J. and Sastry, S., “Optimization-Based Formation Reconfiguration Planning for Autonomous Vehicles,” Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003) 3, pp. 3758–3763.
23.Chung, H. and Sastry, S. S., “Autonomous Helicopter Formation Using Model Predictive Control,” Proceedings of the Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference (2006) 1, pp. 459–473.
24.Ginsberg, J. H., Advanced Engineering Dynamics, 2nd ed. (Cambridge University Press, Cambridge, UK, 1998).
25.Slotine, J. E. and Li, W., Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, NJ 1991).
26.Kim, S. K. and Tilbury, D. M., “Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics,” J. Robot. Syst. 21 (3), 95116 (2004).

Keywords

Full formation control for autonomous helicopter groups

  • Farbod Fahimi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.