Skip to main content Accessibility help
×
Home

The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control

  • Dario Martelli (a1), Federica Vannetti (a2), Mario Cortese (a1), Peppino Tropea (a1), Francesco Giovacchini (a1), Silvestro Micera (a1) (a3), Vito Monaco (a1) and Nicola Vitiello (a1) (a2)...

Summary

Fall-related accidents are among the most serious concerns in elderly people, amputees and subjects with neurological disorders. The aim of this paper was to investigate the behaviour of healthy subjects wearing a novel light-weight pelvis exoskeleton controlled in zero-torque mode while carrying out unperturbed locomotion and managing unexpected perturbations. Results showed that the proposed exoskeleton was unobtrusive and had a minimum loading effect on the human biomechanics during unperturbed locomotion. Conversely, it affected the movement of the trailing leg while subjects managed unexpected slipping-like perturbations. These findings support further investigations on the potential use of powered exoskeletons to assist locomotion and, possibly prevent incipient falls.

Copyright

Corresponding author

*Corresponding author: E-mail: n.vitiello@sssup.it

References

Hide All
1.Masud, T. and Morris, R. O., “Epidemiology of falls,” Age and Ageing 30 (4), 37 (2001).
2.Berg, W. P., Alessio, H. M., Mills, E. M. and Tong, C., “Circumstances and consequences of falls in independent community-dwelling older adults,” Age Ageing 26 (4), 261268 (1997).
3.Miller, W. C., Speechley, M. and Deathe, B., “The prevalence and risk factors of falling and fear of falling among lower extremity amputees,” Arch. Phys. Med. Rehabil. 82 (8), 10311037 (2001).
4.Stolze, H., Klebe, S., Zechlin, C., Baecker, C., Friege, L. and Deuschl, G., “Falls in frequent neurological diseases–prevalence, risk factors and aetiology,” J. Neurol. 251 (1), 7984 (2004).
5.van der Linden, M. H., Marigold, D. S., Gabreels, F. J. and Duysens, J., “Muscle reflexes and synergies triggered by an unexpected support surface height during walking,” J. Neurophysiol. 97 (5), 36393650 (2007).
6.Marigold, D. S. and Patla, A. E., “Adapting locomotion to different surface compliances: Neuromuscular responses and changes in movement dynamics,” J. Neurophysiol. 94 (3), 17331750 (2005).
7.Tang, P. F., Woollacott, M. H. and Chong, R. K., “Control of reactive balance adjustments in perturbed human walking: Roles of proximal and distal postural muscle activity,” Exp. Brain Res. 119 (2), 141152 (1998).
8.Moyer, B. E., Redfern, M. S. and Cham, R., “Biomechanics of trailing leg response to slipping – Evidence of interlimb and intralimb coordination,” Gait Posture 29 (4), 565570 (2009).
9.Marigold, D. S., Bethune, A. J. and Patla, A. E., “Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion,” J. Neurophysiol. 89 (4), 17271737 (2003).
10.Martelli, D., Monaco, V., Luciani, L. Bassi and Micera, S., “Angular momentum during unexpected multidirectional perturbations delivered while walking,” IEEE Trans. Biomed. Eng. 60 (7), 17851795 (2013).
11.Pijnappels, M., Bobbert, M. F. and van Dieen, J. H., “Contribution of the support limb in control of angular momentum after tripping,” J. Biomech. 37 (12), 18111818 (2004).
12.Eng, J. J., Winter, D. A. and Patla, A. E., “Strategies for recovery from a trip in early and late swing during human walking,” Exp. Brain Res. 102 (2), 339349 (1994).
13.Mansfield, A., Peters, A. L., Liu, B. A. and Maki, B. E., “Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: A randomized controlled trial,” Phys. Ther. 90 (4), 476491 (2010).
14.Parijat, P. and Lockhart, T. E., “Effects of moveable platform training in preventing slip-induced falls in older adults,” Ann. Biomed. Eng. 40 (5), 11111121 (2012).
15.Nyan, M. N., Tay, F. E. and Murugasu, E., “A wearable system for pre-impact fall detection,” J. Biomech. 41 (16), 34753481 (2008).
16.Wu, G. and Xue, S., “Portable preimpact fall detector with inertial sensors,” IEEE Trans. Neural Syst. Rehabil. Eng. 16 (2), 178183 (2008).
17.Bruijn, S. M., Meijer, O. G., Beek, P. J. and van Dieen, J. H., “Assessing the stability of human locomotion: A review of current measures,” Assessing the stability of human locomotion: A review of current measures 10 (83), 20120999 (2013).
18.Pons, J. L., “Rehabilitation exoskeletal robotics. The promise of an emerging field,” IEEE Eng. Med. Biol. Mag. 29 (3), 5763 (2010).
19.Veneman, J. F., Kruidhof, R., Hekman, E. E. G., Ekkelenkamp, R., Van Asseldonk, E. H. F. and van der Kooij, H., “Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 15 (3), 379386 (2007).
20.Dollar, A. M. and Herr, H., “Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art,” IEEE Trans. Robot. 24 (1), 144158 (2008).
21.Farris, R. J., Quintero, H. A. and Goldfarb, M., “Performance Evaluation of a Lower Limb Exoskeleton for Stair Ascent and Descent with Paraplegia,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) San Diego, CA, USA (Aug. 28–Sep. 1, 2012) pp. 19081911.
22.Giovacchini, F., Fantozzi, M., Peroni, M., M. Moisé, Cempini, M., Cortese, M., Lefeber, D., Carrozza, M. C. and Vitiello, N., “A Light-weight Exoskeleton for Hip Flexion-extension Assistance,” Proceedings of the 1st International Congress on Neurotechnology, Electronics and Informatics Vilamoura, Portugal (Sep. 18–20, 2013) pp. 194198.
23.Abe, D., Yanagawa, K. and Niihata, S., “Effects of load carriage, load position, and walking speed on energy cost of walking,” Appl. Ergon. 35 (4), 329335 (2004).
24.Martin, P. E. and Nelson, R. C., “The effect of carried loads on the walking patterns of men and women,” Ergonomics 29 (10), 11911202 (1986).
25.Pratt, G. A. and Williamson, M. M., “Series Elastic Actuators Iros ‘95,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots Pittsburgh, PA, USA (Aug. 5–9, 1995) pp. 399406.
26.Cempini, M., Giovacchini, F., Vitiello, N., Cortese, M., Moise, M., Posteraro, F. and Carrozza, M. C., “NEUROExos: A Powered Elbow Orthosis for Post-Stroke Early Neurorehabilitation,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Osaka, Japan (Jul. 3–7, 2013) pp. 342345.
27.Giovacchini, F., Cempini, M., Vitiello, N. and Carrozza, M. C., Molla Torsionale Italian Patent Application, Application number: FI2013A000156, Application date: July 1, 2013.
28.Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., Vecchi, F. and Carrozza, M. C., “NEUROExos: A powered elbow exoskeleton for physical rehabilitation,” IEEE Trans. Robot. 29 (1), 220235 (2013).
29.Zinn, M., Roth, B., Khatib, O. and Salisbury, J. K., “A new actuation approach for human friendly robot design,” A new actuation approach for human friendly robot design 23 (4–5), 379398 (2004).
30.Vitiello, N., Lenzi, T., De Rossi, S. M. M., Roccella, S. and Carrozza, M. C., “A sensorless torque control for Antagonistic Driven Compliant Joints,” Mechatronics 20 (3), 355367 (2010).
31.Luciani, L. Bassi, Genovese, V., Monaco, V., Odetti, L., Cattin, E. and Micera, S., “Design and evaluation of a new mechatronic platform for assessment and prevention of fall risks,” Design and evaluation of a new mechatronic platform for assessment and prevention of fall risks 9 (1), 51 (2012).
32.Davis, R. B., Ounpuu, S., Tyburski, D. and Gage, J. R., “A gait analysis data collection and reduction technique,” Hum. Mov. Sci. 10, 575587 (1991).
33.Vitiello, N., Lenzi, T., De Rossi, S. M. M., Giovacchini, F., Cempini, M. and Carrozza, M. C., “Technological Aid for Transfemoral Amputees,” PCT patent application number: PCT/IB2013/055065, Application date: June 20, 2013, Publication date: December 27, 2013, WO 2013/190495.
34.Zhang, F., D'Andrea, S. E., Nunnery, M. J., Kay, S. M. and Huang, H., “Towards design of a stumble detection system for artificial legs,” IEEE Trans. Neural Syst. Rehabil. Eng. 19 (5), 567577 (2011).
35.Winter, D. A., Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological (University of Waterloo Press, Waterloo, 1991).

Keywords

Related content

Powered by UNSILO

The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control

  • Dario Martelli (a1), Federica Vannetti (a2), Mario Cortese (a1), Peppino Tropea (a1), Francesco Giovacchini (a1), Silvestro Micera (a1) (a3), Vito Monaco (a1) and Nicola Vitiello (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.