Skip to main content Accessibility help

Dynamic modeling and stability optimization of a redundant mobile robot using a genetic algorithm

  • M. Mosadeghzad (a1), D. Naderi (a1) and S. Ganjefar (a1)


Kinematic reconfigurable mobile robots have the ability to change their structure to increase stability and decrease the probability of tipping over on rough terrain. If stability increases without decreasing center of mass height, the robot can pass more easily through bushes and rocky terrain. In this paper, an improved sample return rover is presented. The vehicle has a redundant rolling degree of freedom. A genetic algorithm utilizes this redundancy to optimize stability. Parametric motion equations of the robot were derived by considering Iterative Kane and Lagrange's dynamic equations. In this research, an optimal reconfiguration strategy for an improved SRR mobile robot in terms of the Force–Angle stability measure was designed using a genetic algorithm. A path-tracking nonlinear controller, which maintains the robot's maximum stability, was designed and simulated in MATLAB. In the simulation, the vehicle and end-effector paths and the terrain are predefined and the vehicle has constant velocity. The controller was found to successfully keep the end-effector to the desired path and maintained optimal stability. The robot was simulated using ADAMS for optimization evaluation.


Corresponding author

*Corresponding author: E-mail:


Hide All
1.Lagnemma, K., Rzepniewski, A., Dubowsky, S., Pirjanian, P., Huntsberger, T. and Schenker, P., “Mobile Robot Kinematic Reconfigurability for Rough-Terrain”, Proceedings of the SPIE, Boston, MA, USA (Aug. 2000) vol. 4196, pp. 413420.
2.Kane, T. R. and Levinson, D. A., “The use of Kane's dynamical equations in robotics,” Int. J. Robot. Res. 2 (3), 321 (1983).
3.Sharifi, M., Mahalingam, S. and Dwivedi, S., “Derviation of Kane's Dynamical Equations for a Three Link (3R) Manipulator,” Proceedings of the IEEE Twentieth Southeastern Symposium on System Theory, Charlotte, NC, USA (1988) vol. 1, pp. 573580.
4.Nukulwauthiopas, W., Laowattana, S. and Maneewarn, T., “Dynamic Modeling of a One-Wheel Robot by Using Kane's Method,” Proceedings of the IEEE International Conference on Industrial Technology (ICIT '02), Bangkok, Thailand (2002) vol. 1, pp. 524529.
5.Thanjavur, K. and Rajagopalan, R., “Ease of Dynamic Modeling of Wheeled Mobile Robots (WMRs) using Kane's Approach,” Proceedings of the IEEE International Conference on Robotic and Automation, Albuquerque, New Mexico (1997) pp. 29262931.
6.Tanner, H. G. and Kyriakopoulos, K. J., “Mobile manipulator modeling with Kane's approach,” Robotica 19, 675690 (2001).
7.Ghafari, A., Meghdari, A., Naderi, D. and Eslami, S., “Stability enhancement of mobile manipulator via soft computing,” Int. J. Adv. Robot. Syst. 3 (3), 191198 (2006).
8.Papadopoulos, E. G. and Rey, D. A., “A New Measure of Tipover Stability Margin for Mobile Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA (Apr. 1996).
9.Suza, D. and Frank, A., Advanced Dynamics: Modeling and Analysis (Prentice-Hall, New Jersey, NJ, USA, 1984).
10.Kane, R. T., Levinson, S. and Maneewarn, A. D., Dynamics: Theory and Applications (McGraw-Hill, New York, 1985).
11.Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd ed. (Pearson/Prentice Hall, NJ, USA, 2005).
12.Sreenivasan, S. and Wilcox, B., “Stability and traction control of an actively actuated micro-rover,” J. Robot. Syst. 11 (6), 487502 (1994).
13.Sreenivasan, S. and Waldron, K., “Displacement analysis of an actively articulated wheeled vehicle configuration with extensions to motion planning on uneven terrain,” ASME J. Mech. Des. 118 (2), 312317 (1996).
14.Farritor, S., Hacot, H. and Dubowsky, S., “Physics-Based Planning for Planetary Exploration,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Belgium (May 1998).
15.Hoorfar, A., “A Comparative Study of Corrugated Horn Design by Evolutionary Technique,” Proceedings of the 2003 IEEE Aerospace Conference, Big Sky, MT, USA (Mar 2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed