Skip to main content Accessibility help
×
Home

Dimensional synthesis of the Delta robot using transmission angle constraintsDimensional synthesis of the Delta robot using transmission angle constraints

  • LiMin Zhang (a1), JiangPing Mei (a1), XueMan Zhao (a1) and Tian Huang (a1)

Summary

This paper deals with dynamic dimensional synthesis of the Delta robot using the pressure/transmission angle constraints. Two types of pressure/transmission angles are defined, with which the direct and indirect singularities can be identified in a straightforward manner. Two novel global dynamic metrics are proposed for minimisation, which are associated respectively with the inertial and centrifuge/Coriolis components of the driving torque. Various geometrical and performance constraints are taken into account in terms of workspace/machine volume ratio, pressure/transmission angles, etc. The effects of pressure/transmission angle constraints on the feasible domain of design variables are investigated in depth via an example, and a set of optimised dimensional parameters is obtained for achieving a good kinematic and dynamic performance throughout the entire task workspace.

Copyright

Corresponding author

*Corresponding author. E-mail: ppm@tju.edu.cn

References

Hide All
1.Huang, T., Li, M., Li, Z. X., Chetwynd, D. G. and Whitehouse, D. J. “Planar parallel robot mechanism with two translational degrees of freedom,” US Patent, 7090458 B2 (2006).
2.Huang, T., Li, Z. X., Li, M., Chetwynd, D. G. and Gosselin, C. M.Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations,” ASME J. Mech. Des. 126, 449455 (2004).
3.Clavel, R., “Device for the movement and positioning of an element in space,” US Patent, 4976582 (1990).
4.Clavel, R., “A Fast Robot with Parallel Geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Lausanne, Switzerland (1988) pp. 91100.
5.Pierrot, F. and Company, O., “H4: A New Family of 4-dof Parallel Robots,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA (1999) pp. 508513.
6.Nabat, V., Rodriguez, M., Company, O., krut, S. and Pierrot, F. “Par4: Very High Speed Parallel Robot for Pick-And-Place,” Proceedings of the IEEE International Conference on Intelligent Robotic Systems (IROS), Edmonton, Alberta (2005) pp. 553558.
7.Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 439446 (1985).
8.Zanganeh, K. and Angeles, J., “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robot. Res. 6, 185197 (1997).
9.Chablat, D., Wenger, P. and Angeles, J., “The Iso-Conditioning Loci of a Class of Closed-Chain Manipulators,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Leuven, Belgium (1998) pp. 19701975.
10.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a spherical 3-DOF parallel manipulator,” J. Mech. Transm. Autom. Des. 111 (2), 202207 (1989).
11.Huang, T., Whitehouse, D. J. and Wang, J. S., “Local dexterity, optimum architecture and design criteria of parallel machine tools,” CIRP Ann. 47 (1), 347351 (1998).
12.Gosselin, C. M. and Angeles, J., “A globe performance index for the kinematic optimization of robotic manipulators,” ASME J. Mech. Des. 113, 220226 (1991).
13.Miller, K., “Maximization of workspace volume of 3-DOF spatial parallel manipulator,” ASME J. Mech. Des. 124, 347350 (2002).
14.Miller, K., “Optimal design and modeling of spatial parallel manipulators,” Int. J. Robot. Res. 23 (2), 127140 (2004).
15.Laribi, M. A., Romdhane, L. and Zeghloul, S., “Analysis and dimensional synthesis of the Delta robot for a prescribed workspace,” Mech. Mach. Theory 42, 859870 (2007).
16.Choi, H., Konno, A. and Uchiyama, M., “Design, implementation, and performance evaluation of a 4-dof parallel robot,” Robotica 28 (1), 107118 (2010).
17.Huang, T., Li, M., Li, Z. X., Chetwynd, D. G. and Whitehouse, D. J.Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index,” IEEE Trans. Robot. Autom. 20 (3), 538542 (2004).
18.Sun, J. W. H. and Waldron, K. J., “Graphical transmission angle control in planar linkage synthesis,” Mech. Mach. Theory 14, 385397 (1981).
19.Balli, S. S. and Chand, S., “Transmission angle in mechanisms,” Mech. Mach. Theory 37, 175195 (2002).
20.Liu, X. J., Wu, C. and Wang, J. S., “A New Index for the Performance Evaluation of Parallel Manipulators: A Study on Planar Parallel Manipulators,”Proceeding of the 6th World Congress on Intelligent Control and Automation (WCICA), Chongqing, China (2008) pp. 353357.
21.Ma, O. and Angeles, J., “Optimum Design of Manipulators Under Dynamic Isotropy Conditions,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Atlanta, USA (1993) pp. 470475.
22.Yoshikawa, T., “Dynamic manipulability of robot manipulators,” J. Rob. Syst. 2 (1), 113124 (1985).
23.Tadokoro, S., Kimura, I. and Takamori, T., “A Measure for Evaluation of Dynamic Dexterity Based on a Stochastic Interpretation of Manipulator Motion,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pisa, Italy (1991) pp. 509514.
24.Codourey, A., “Dynamic modelling of parallel robots for computed-torque control implementation,” Int. J. Robot. Res. 17 (12), 13251336 (1998).
25.Miller, K., “Experimental Verification of Modeling of Delta Robot Dynamics by Direct Application of Hamilton's Principle,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Nagoya, Japan (1995) pp. 532537.
26.Choi, H., Konno, A. and Uchiyama, M., “Inverse Dynamic Analysis of a 4-DOF Parallel Robot H4,” Proceedings of the IEEE International Conference on Intelligent Robotic Systems (IROS), Sendai, Japan (2004) pp. 35013506.
27.Huang, T., Mei, J. P., Li, Z. X. and Zhao, X. M.A method for estimating servomotor parameters of a parallel robot for rapid pick-and-place operations,” ASME J. Mech. Des. 127, 596601 (2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed