Skip to main content Accessibility help
×
Home

Development of an image-guided robotic system for surgical positioning and drilling

  • Ching-Shiow Tseng (a1), Chiao-Chi Huang (a2) and Chen-San Chen (a3)

Abstract

This study develops a novel image-guided robotic system that can be used to position biopsy needles or drill fixation holes. After the patient has received a CT-scan, the registration of the image, localizer (patient), and robot frames will be done by finding the optimum transformation matrix among the image and localizer coordinates of the fiducial markers and the DRFs mounted on the robot. Then, surgical paths planned on the computer displayed images can be transformed to the robot frame, and the robot is thus capable to move surgical tools to the preplanned location. The positioning error is about 2 mm and the orientation error is about 0.23°.

Copyright

Corresponding author

*Corresponding author. E-mail: cstseng@cc.ncu.edu.tw

References

Hide All
1.Kwoh, Y. S., Hou, J., Jonckheere, E. A. and Hayati, S., “A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery,” IEEE Trans. Biomed. Eng. 35 (2), 153160 Feb. 1988.
2.Kwoh, Y. S., Reed, I. S., Chen, J. S., Shao, H. M., Truong, T. K. and Jonckheere, E., “A new computerized tomography-aided robotic stereotaxis system,” Robot. Age, 17–22 Jun. 1985.
3.Potamianos, P., Davies, B. L. and Hibbert, R. D., “Intra-operative imaging guidance for keyhole surgery,” Proceedings of International Symposium on Medical Robotics and Computer Assisted Surgery, Pittsburgh, PA 1, 1994 pp. 98105.
4.Lea, J. T., Watkins, D., Kienzle, T. C. III, Mills, A., Peshkin, M. A. and Stulberg, S. D., “Registration and immobilization for robot-assisted orthopedic surgery,” Proceedings of International Symposium on Medical Robotics and Computer Assisted Surgery, Pittsburgh, Pennsylvania, USA 1994 pp. 63–68.
5.Troccaz, J., Lavallée, S., Sautot, P., Cinquin, P., Mazier, B. and Chirossel, J. P., “Robot assisted spine surgery,” Medi-Mechatronics Workshop, Málaga, Spain Oct. 1992.
6.Kienzle, T. C., Stulberg, S. D., Peshkin, M., Quaid, A. and Wu, C., “An integrated CAD-Robotics System for total knee replacement,” Surgery Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, GA 1993 pp. 99894.
7.Matsen, F. A. III, Garbini, J. L., Sidles, J. A., Pratt, B. and Baumgarten, D., “Robotic assistance in orthopedic surgery,” Clin. Orthop. 296, 178186 1993.
8.Santos-Munné, J. J., Peshkin, M. A., Mirkovic, S., Stulberg, S. D. and Kienzle, T. C., “A stereotactic/robotic system for pedicle screw placement,” Proceedings of Medicine Meets Virtual Reality III San Diego, CA 1995 pp. 326333.
9.Davies, B. L., Lin, W. J., Hibberd, R. D. and Cobb, J. C., “Active compliance in robotic surgery—The use of force control as a dynamic constraint,” J. Eng. Med. (4), 285292 Sep. 1997.
10.Robert, D. H. and Matsuoka, Y., “Robotics for surgery,” Annu. Rev. Biomed. Eng., 211–240 1999.
11.Lueth, T. C., Albrecht, A., Demirtas, M., Zachow, S., Heissler, E., Klein, M., Menneking, H., Hommel, G. and Bier, J., “A surgical robot system for maxillofacial surgery,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON) Aachen, Germany 1998 pp. 24702475.
12.Drake, J. M., Joy, M., Goldenberg, A. and Kreindler, D., “Computer and robotic assisted resection of brain tumors,” Proceedings of 5th International Conference on Advanced Robotics, Pisa, Italy 1991 pp. 888892.
13.Glauser, D., Flury, P., Villotte, N. and Burckhardt, C. W., “Conception of a robot dedicated to neurosurgical operations,” Proceedings of 5th International Conference on Advanced Robotics, Pisa, Italy 1991, pp. 899904.
14.Brief, J., Hassfeld, H., Redlich, T., Ziegler, C., Muenchenberg, J. and Daueber, S., “Robot assisted insertion of dental implants— A clinical evaluation,” Proceedings of the Computer Assisted Radiology and Surgery, San Francisco, USA 2000 pp. 932937.
15.Lueth, T. and Bier, J., “Robot Assisted Intervention in Surgery,” In: Neuronavigation-Neurosurgical and Computer Scientific Aspects (Gilsbach, J. M. and Stiehl, H. S. eds.) (Springer-Verlag, 1999).
16.Kondo, S., Okada, Y., Iseki, H., Hori, T., Takakura, K., Kobayashi, A. and Nagata, H., “Thermological study of drilling bone tissue with a high-speed drill,” Neurosurgery 46 (5), 11621168 May 2000.
17.Alici, G. and Daniel;, R. “Robotic drilling under force control: Execution of a task”, Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Yokohama, Japan 1993.
18.Allotta, B., Giacalone, G. and Rinaldi;, L.A hand-held drilling tool for orthopedic surgery,” IEEE/ASME Trans. Mechatronics 2 (4), Dec. 1997.
19.Pott, P., Scharf, H. and Schwarz, M. L., “Today's state of the art in surgical robotics,” Comput. Aided Surg. 10 (2), 101132 Mar. 2005.
20.Cleary, K., Watson, V., Lindisch, D., Taylor, R., Fichtinger, G., Xu, S., White, C., Donlon, J., Taylor, M., Patriciu, A., Mazilu, D. and Stoianovici, D., “Precision placement of instruments for minimally invasive procedures using a “Needle Driver” robot,” Int. J. Med. Robot. Comput. Assisted Surg. 1 (2), 4047 Jan. 2005.
21.Cleary, K., Zigmundb, K., Banovaca, B., Whitec, F. and Stoianovici, D., “Robotically assisted lung biopsy under CT fluoroscopy: Lung cancer screening and phantom study,” Proceedings of Computer Assisted Radiology and Surgery, Berlin, Germany 2005 pp. 740–745.
22.Chang, S. D., “The cyberknife: Potential in patients with cranial and spinal tumors”, Am. J. Cancer 4 (6), 383393 2005.
23.Stoyanov, D., Darzi, A. and Yang, G. Z., “A practical approach towards accurate dense 3D depth recovery for robotic laparoscopic surgery”, Comput. Aided Surg. 10 (4), 199208 Jul. 2005.

Related content

Powered by UNSILO

Development of an image-guided robotic system for surgical positioning and drilling

  • Ching-Shiow Tseng (a1), Chiao-Chi Huang (a2) and Chen-San Chen (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.