Skip to main content Accessibility help
×
Home

Development of a Bio-inspired Wall-Climbing Robot Composed of Spine Wheels, Adhesive Belts and Eddy Suction Cup

  • Jinfu Liu (a1) (a2), Linsen Xu (a1) (a3), Shouqi Chen (a2), Hong Xu (a2), Gaoxin Cheng (a2) and Jiajun Xu (a2)...

Summary

A novel wall-climbing robot with multiple attachment modes is proposed. For uneven surfaces, the mechanical model of a spine wheel is brought out to grab the surfaces with its multi-spines. For smooth surfaces, an adhesive belt is obtained by the industrial synchronous belt and the polyurethane material to adhere to the surfaces. To avoid the robot overturning, an adsorption device with flexible skirt edge is presented. In addition, the normal force and motor torque are evaluated respectively. Finally, the prototype of the wall-climbing robot is manufactured and tested, and the experimental results show that the robot could climb the wall surface 0–360° with a maximum load of 0.5 kg.

Copyright

Corresponding author

*Corresponding author. E-mail: lsxu@iamt.ac.cn

References

Hide All
1.Sato, E., Iki, S., Yamanishi, K., Horibe, H. and Matsumoto, A., “Dismantlable adhesion properties of reactive acrylic copolymers resulting from cross-linking and gas evolution,” J. Adhes. 93(10), 811822 (2017).
2.Tavakoli, M., Lourençoa, J., Viegas, C., Neto, P. and de Almeida, A. T., “The hybrid Omni Climber robot: Wheel based climbing, arm based plane transition, and switchable magnet adhesion,” Mechatronics 36, 136146 (2016).
3.Purtov, J., Frensemeier, M., and Kroner, E., “Switchable adhesion in vacuum using bio-inspired dry adhesives,” ACS Appl. Mater. Interfaces 7(43), 2412724135 (2015).
4.Nishi, A., “Development of wall-climbing robots,” Comput. Electric. Eng. 22(2), 123149 (1996).
5.Luk, B. L., Collie, A. A. and Billingsley, J., “Robug II: An Intelligent Wall Climbing robot,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, California (IEEE, 1991) pp. 23422347.
6.Kim, D., Hong, H., Kim, H. S. and Kim, J., “Optimal design and kinetic analysis of a stair-climbing mobile robot with rocker-bogie mechanism,” Mech. Mach. Theory 50, 90108 (2012).
7.Luk, B. L., Galt, S. and Chen, S., “Using genetic algorithms to establish efficient walking gaits for an eight-legged robot,” Int. J. Syst. Sci. 32(6), 703713 (2001).
8.Koo, I. M., Trong, T. D., Lee, Y. H., Moon, H., Koo, J., Park, S. K. and Choi, H. R., “Development of wall climbing robot system by using impeller type adhesion mechanism,” J. Intell. Robot. Syst. 72(1), 5772 (2013).
9.Minor, M., Dulimarta, H., Danghi, G., Mukherjee, R., Tummala, R. L. and Aslam, D., “Design, Implementation, and Evaluation of an Under-Actuated Miniature Biped Climbing Robot,” IEEE/RSJ International Conference on Intelligent Robots & Systems, Takamatsu, Japan, (IEEE, 2000) pp. 1999–2005.
10.Zhou, Q. and Li, X., “Experimental investigation on climbing robot using rotation-flow adsorption unit,” Robot. Auton. Syst. 105, 112120 (2018).
11.Menon, C., Murphy, M. and Sitti, M., “Gecko Inspired Surface Climbing Robots,” IEEE International Conference on Robotics and Biomimetics, Shenyang, China, (IEEE, 2004) pp. 431436.
12.Menon, C. and Sitti, M., “Biologically Inspired Adhesion Based Surface Climbing Robots,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain (IEEE, 2005) pp. 27152720.
13.Seo, T. W. and Sitti, M., “Tank-like module-based climbing robot using passive compliant joints,” IEEE/ASME Trans. Mechatron. 18(1), 397408 (2013).
14.Unver, O. and Sitti, M., “A Miniature Ceiling Walking Robot with Flat Tacky Elastomeric Footpads,” 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (IEEE, 2009) pp. 22762281.
15.Wu, X., Wang, X., Mei, T. and Sun, S., “Mechanical analyses on the digital behavior of the Tokay Gecko (Gekko Gecko) based on a multi-level directional adhesion model,” Proc. R. Soc. 471(2179), 120 (2015).
16.Kim, S., Asbeck, A. T., Cutkosky, M. R. and Provancher, W. R., “SpinybotII: Climbing Hard Walls with Compliant Microspines,” International Conference on Advanced Robotics, Seattle, WA, USA, (IEEE, 2005) pp. 601602.
17.Asbeck, A. T., Kim, S., McClung, A., Parness, A. and Cutkosky, M. R., “Climbing Walls with Microspines,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA (IEEE, 2006) pp. 43154317.
18.Kim, S., Asbeck, A. T., Cutkosky, M. R., Provancher, W. R. and Lanzetta, M., “Scaling hard vertical surfaces with compliant microspine arrays,” Int. J. Robot. Res. 25(25), 11651179 (2006).
19.Saunders, A., Goldman, D. I., Full, R. J. and Buehler, M., “The rise climbing robot: Body and leg design,International Society for Optical Engineering, Orlando, Florida, United States, 2006, p. 623017.
20.Autumn, K., Buehler, M., Cutkosky, M., Fearing, R., Full, R. J., Goldman, D., Groff, R., Provancher, W., Rizzi, A. A., Saranli, U. and Saunders, A., “Robotics in scansorial environments,” Int. Soc. Opt. Eng. 5804, 291302 (2005).
21.Spenko, M. J., Haynes, G. C., Sanders, J. A., Cutkosky, M. R., Rizzi, A. A., Full, R. J. and Koditschek, D. E., “Biologically inspired climbing with a hexapedal robot,” J. Field Robot. 25(4–5), 223242 (2008).
22.Haynes, G. C., Khripin, A., Lynch, G., Amory, J., Saunders, A., Rizzi, A. A. and Koditschek, D. E., “Rapid Pole Climbing with a Quadrupedal Robot,” IEEE International Conference on Robotics and Automation, Kobe, Japan (IEEE, 2009) pp. 27622772.
23.Parness, A., Frost, M., Thatte, N., King, J. P., Witkoe, K., Nevarez, M., Garrett, M., Aghazarian, H. and Kennedy, B., “Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers,” J. Field Robot. 30(6), 897915 (2013).
24.Chen, D., Zhang, Q. and Liu, S., “Design and realization of a flexible claw of rough wall climbing robot,” Adv. Mater. Res. 328, 388392 (2011).
25.Liu, Y., Sun, S., Wu, X. and Mei, T., “A wheeled wall-climbing robot with bio-inspired spine mechanisms,” J. Bionic Eng. 12(1), 1728 (2015).
26.Wang, W., Wu, S., Zhu, P. and Liu, R., “Analysis on the Dynamic Climbing Forces of a Gecko Inspired Climbing Robot Based on GPL Model,” 2015 IEEE/RSJ International Conference on Intelligent Robots & Systems, Hamburg, Germany, (2015) pp. 33143319.
27.Ji, A., Zhao, Z., Manoonpong, P., Wang, W., Chen, G. and Dai, Z., “A bio-inspired climbing robot with flexible pads and claws,” J. Bionic Eng. 15(2), 368378 (2018).
28.Niederegger, S. and Gorb, S., “Tarsal movements in flies during leg attachment and detachment on a smooth substrate,” J. Insect Physiol. 49(6), 611620 (2003).
29.Wu, X., Research on the Bio-Inspired Dry Adhesive Mechanism and the Wall-Climbing Robot Ph.D. Dissertation (School of Engineering Science, University of Science and Technology of China, Hefei, 2015).

Keywords

Development of a Bio-inspired Wall-Climbing Robot Composed of Spine Wheels, Adhesive Belts and Eddy Suction Cup

  • Jinfu Liu (a1) (a2), Linsen Xu (a1) (a3), Shouqi Chen (a2), Hong Xu (a2), Gaoxin Cheng (a2) and Jiajun Xu (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.