Skip to main content Accessibility help
×
Home

Designing robot grippers: optimal edge contacts for part alignment

  • Mike Tao Zhang (a1) and Ken Goldberg (a2)

Summary

Although parallel-jaw grippers play a vital role in automated manufacturing, gripper surfaces are still designed by trial-and-error. This paper presents an algorithmic approach to designing gripper jaws that mechanically align parts in the vertical (gravitational) plane. We consider optimal edge contacts, based on modular trapezoidal segments that maximize contact between the gripper and the part at its desired final orientation. Given the n-sided 2D projection of an extruded convex polygonal part, mechanical properties such as friction and center of mass, and initial and desired final orientations, we present an O(n3 log n) numerical algorithm to design optimal gripper jaws. We also present an O(n log n) algorithm to compute tolerance classes for these jaws, and report on an online implemented version of the algorithm and physical experiments with the jaws it designed. This paper extends earlier results that generated optimal point contacts [M. T. Zhang and K. Goldberg, “Gripper point contacts for part alignment,” IEEE Trans. Robot. Autom.18(6), 902–910 (2002)].

Copyright

Corresponding author

*Corresponding author. E-mail: mike.zhang@intel.com

References

Hide All
1.Abell, T. and Erdmann, M., “Stably supported rotations of a planar polygon with two frictionless contacts,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Pittsburgh, PA 1995 pp. 411418.
2.Akella, S. and Mason, M.. “Orienting toleranced polygonal parts,” Int. J. Robot. Res. 19 (12), 11471170 2000.
3.Anderson, C., Zhuang, Y. and Goldberg, K.. “Fixturenet II: Interactive redesign and force visualization on the Web (CD),” Proceedings of the ASME Design Engineering Technical Conference, Sacramento, CA 1997.
4.Berretty, R.-P., Goldberg, K., Cheung, L., Overmars, M., Smith, G. and Van Der Stappen, A. F.. “Trap design for vibratory bowl feeders,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 25582563.
5.Bicchi, A., “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,” IEEE Trans. Robot. Autom. 16 (6), 652662 2000.
6.Brown, S. and Wright, P., , A progress report on the manufacturing analysis service, an Internet-based reference tool,” J. Manuf. Syst. 17, 389398 1998.
7.Brost, R. and Goldberg, K., “A complete algorithm for designing planar fixtures using modular components,” IEEE Trans. Robot. Autom. 12 (1), 3146 1999.
8.Brost, R. and Peters, R., “Automatic design of 3-D fixtures and assembly pallets,” Int. J. Robot. Res. 17 (12), 12431281 1998.
9.Causey, G. and Quinn, R., “Gripper design guidelines for modular manufacturing,” Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium 1998, pp. 14531458.
10.Chen, J., Goldberg, K., Overmas, M., Halperin, D., Bohringer, K. and Zhuang, Y., “Shape tolerance in feeding and fixturing,” In: Robotics: The Algorithmic Perspective (Agarwal, P., Kavraki, L. and Mason, M., eds.) (A. K. Peters, Natick, MA, 1999.
11.Chui, W. and Wright, P., “A WWW computer integrated manufacturing environment for rapid prototyping and education,” J. Comput. Integr. Manuf. 12, 5460 1999.
12.Donald, B., “Planning multistep error detection and recovery strategies,” Int. J. Robot. Res. 9 (1), 360 1990.
13.Goemans, Onno C., Goldberg, Ken and Frank Van DerStappen, A., “Blades: A new class of geometric primitives for feeding 3D parts on vibratory tracks,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL 2006.
14.Grupen, R., Henderson, T. and McCammon, I., “A survey of general-purpose manipulation,” Int. J. Robot. Res. 8 (1), 3862 1989.
15.Joskowicz, L., Sacks, E. and Srinivasan, V.. “Kinematic tolerance analysis,” Comput.-Aided Des. 29 (2), 147157 1996.
16.Larson, J. and Cheng, H., “Object-oriented CAM design through the Internet,” J. Intell. Manuf. 11, 515534 2000.
17.Latombe, J.-C., Wilson, R. and Cazals, F.. “Assembly sequencing with toleranced parts,” Comput.-Aided Des. 29 (2), 159174 1997.
18.Lynch, K., “Toppling manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 25512557.
19.Mason, M. and Salisbury, J.. Robotic Hands and the Mechanics of Manipulation (MIT Press, Cambridge, MA, 1985.
20.Mason, M., “Two graphical methods for planar contact problems,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Osaka, Japan 1991, pp. 443448.
21.Mishra, B., Schwartz, J. and Sharir, M., “On the existence and synthesis of multifinger positive grips,” Algorithmica 2 (4), 541558 1987.
22.Murray, R., Li, Z. and Sastry, S.. A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton, FL, 1994.
23.Okamura, A., Smaby, N. and Cutkosky, M., “An overview of dexterous manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA 2000, pp. 255262.
24.Piccinocchi, S., Ceccarelli, M., Piloni, F. and Bicchi, A., “Interactive benchmark for planning algorithms on the Web,” Proceedings of the IEEE International Conference on Roboticss and Automation, Albuquerque, NM 1997, pp. 399404.
25.Preparata, F. and Hong, S.. “Convex hulls of finite sets of points in two and three dimensions,” Commun. ACM 20 (2), 8793 1977.
26.Requicha, A., “Mathematical definition of tolerance specifications,” Manuf. Rev. 6 (4), 269274 1993.
27.Roy, U., Liu, C. and Woo, T., “Review of dimensioning and tolerancing: Representation and processing,” Comput.-Aided Des. 23 (7), 466483 1991.
28.Shimoga, K., “Robot grasp synthesis algorithms: A survey,” Int. J. Robot. Res. 15 (3), 230266 1996.
29.Smith, C. and Wright, P., “CyberCut: A World Wide Web based design to fabrication tool,” J. Manuf. Syst. 15, 432442 1996.
30.Smith, G., Lee, E., Goldberg, K., Bohringer, K. and Craig, J.. “Computing parallel-jaw grips,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 18971903.
31.Van Der Stappen, A. F., Wentink, C. and Overmars, M., “Computing immobilizing grasps of polygonal parts,” Int. J. Robot. Res. 19 (5), 467479 2000.
32.Katwyk, K. and Cheng, H., “Xlinkage: A Web-based analysis and simulation tool for planar mechanical systems (CD),” Proceedings of the ASME Design Engineering Technical Conference, Sacramento, CA 1997.
33.Voelcker, H., “A current perspective on tolerancing and metrology,” Manuf. Rev. 6 (4), 258268 1993.
34.Wagner, R., Castanotto, G. and Goldberg, K., “FixtureNet: Interactive computer-aided design via the World Wide Web,” Int. J. Hum.-Comput. Stud. 46, 773788 1997.
35.Yap, C. and Chang, E., “Issues in the metrology of geometric tolerancing,” In: Algorithms for Robotic Motion and Manipulation (Laumond, J.-P. and Overmas, M., eds.) (A. K. Peters, Natick, MA, 1997, pp. 393400.
36.Zhang, M. T. and Goldberg, K., “Design of robot gripper jaws based on trapezoidal modules” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea 2001, pp. 10651070.
37.Zhang, M. T., Cheung, L. and Goldberg, K.. “Shape tolerance for robot gripper jaws,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Wailea, HI 2001, pp. 17821787.
38.Zhang, M. T., Goldberg, K., Smith, G., Berretty, R. P. and Overmars, M., “Pin design for part feeding,” Robotica 19 (6), 695702 2001.
39.Zhang, M. T., “Optimal design of self-aligning robot gripper jaws,” Ph.D. Dissertation (Department of Industrial Engineering and Operations Research, University of California, Berkeley, 2001.
40.Zhang, M. T. and Goldberg, K., “Gripper contacts for part alignment,” IEEE Trans. Robot. Autom. 18 (6), 902910 2002.
41.Zhang, M. T. and Goldberg, K., “Computer-aided gripper jaw design on the Internet,” ASME Trans. J. Comput. Inf. Sci. Eng., 4 (1), 4348 (2004).

Keywords

Related content

Powered by UNSILO

Designing robot grippers: optimal edge contacts for part alignment

  • Mike Tao Zhang (a1) and Ken Goldberg (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.