Skip to main content Accessibility help

Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

  • Xingwei Zhao (a1), Bin Zi (a2) and Lu Qian (a3)


The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Kiapour, A., Kiapour, A. M., Kaul, V., Quatman, C. E., Wordeman, S. C., Hewett, T. E. and Goel, V. K., “Finite element model of the knee for investigation of injury mechanisms: Development and validation,” J. Biomech. Eng. 136 (1), 011002.1-011002.14 (2014).
2. Choi, K. W. and Schmitz, A. M., “Co-simulation of neuromuscular dynamics and knee mechanics during human walking,” J. Biomech. Eng. 136 (1), 021033.1-021033.8 (2014).
3. White, A. A. and Panjabi, M. M., Clinical Biomechanics of the Spine, (JB Lippincott, Philadelphian, 1990), vol. 2, pp. 108112.
4. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K., “The Intelligent ASIMO: System Overview and Integration,” IEEE/RSJ International Conference on, Intelligent Robots and Systems, EPFL, Lausanne, Switzerland (2002), vol. 3, pp. 2478–2483.
5. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G. and Akachi, K., “Humanoid Robot Hrp-3,” IEEE/RSJ International Conference on, Intelligent Robots and Systems IROS 2008, Nice, France (2008) pp. 2471–2478.
6. Huang, Q., Peng, Z., Zhang, W., Zhang, L. and Li, K., “Design of Humanoid Complicated Dynamic Motion based on Human Motion Capture,” IEEE/RSJ International Conference on, Intelligent Robots and Systems, Alberta Canada (2005) pp. 3536–3541.
7. Lohmeier, S., Buschmann, T. and Ulbrich, H., “Humanoid Robot Lola,” IEEE International Conference on, Robotics and Automation ICRA'09, Kobe, Japan (2009) pp. 775–780.
8. Han, J., Zeng, S., Tham, K., Badgero, M. and Weng, J., “Dav: A Humanoid Robot Platform for Autonomous Mental Development,” Proceedings of the 2nd International Conference on Development and Learning, Cambridge, Massachusetts, USA (2002) pp. 73–81.
9. Guenter, F., Roos, L., Guignard, A. and Billard, A. G., “Design of a Biomimetic Upper Body for the Humanoid Robot Robota,” 5th IEEE-RAS International Conference on, Humanoid Robots, Tsukuba, Japan (2005) pp. 56–61.
10. Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schroder, J. and Dillmann, R., “Toward humanoid manipulation in human-centred environments,” Robot. Auton. Syst. 56 (1), 5465 (2008).
11. Carbone, G., Lim, H.-O., Takanishi, A. and Ceccarelli, M., “Stiffness analysis of biped humanoid robot WABIANRIV,” Mech. Mach. Theory 41 (1), 1740 (2006).
12. Holland, O. and Knight, R., “The Anthropomimetic Principle,” Proceedings of the AISB06 Symposium on Biologically Inspired Robotics, Bristol, UK (2006) pp. 1–8.
13. Jamone, L., Metta, G., Nori, F. and Sandini, G., “James: A Humanoid Robot Acting Over An Unstructured World,” 6th IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy (2006) pp. 143–150.
14. Nori, F., Jamone, L., Sandini, G. and Metta, G., “Accurate Control of a Human-Like Tendon-Driven Neck,” 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, Pennsylvania (2007) pp. 371–378.
15. Gao, B., Song, H., Zhao, J., Guo, S., Sun, L. and Tang, Y., “Inverse kinematics and workspace analysis of a cable-driven parallel robot with a spring spine,” Mech. Mach. Theory 76 (1), 5669 (2014).
16. Lee, S. H. and Terzopoulos, D., “Heads up!: Biomechanical modeling and neuromuscular control of the neck,” ACM Trans. Graph. 25 (3), 11881198 (2006).
17. Liem, K., Kecskeméthy, A. and Merlet, J., “Hexaspine: A Parallel Platform for Physical Cervical Spine Simulation-Design and Interval-based Verification,” Proceedings of the 12th World Congress in Mechanism and Machine Science, BESANCON – FRANCE (2007) pp. 17–21.
18. Zi, B., Zhu, Z. C. and Du, J. L., 2011, “Analysis and control of the cable-supporting system including actuator dynamics,” Control Eng. Pract. 19 (5), 491501.
19. Zi, B., Duan, B. Y., Du, J. L. and Bao, H., “Dynamic modeling and active control of a cable-suspended parallel robot,” Mechatronics 18 (1), 112 (2008).
20. Bedoustani, Y. B., Taghirad, H. D. and Aref, M. M., “Dynamics Analysis of a Redundant Parallel Manipulator Driven by Elastic Cables,” 10th International Conference on, Control, Automation, Robotics and Vision ICARCV 2008, Hanoi, Vietnam (2008) pp. 536–542.
21. Hiller, M., Fang, S., Mielczarek, S., Verhoeven, R. and Franitza, D., “Design, analysis and realization of tendon-based parallel manipulators,” Mech. Mach. Theory 40 (4), 429445 (2005).
22. Zhao, X. and Zi, B., “Design and analysis of a pneumatic muscle driven parallel mechanism for imitating human pelvis,” Proc. Inst. Mech. Eng., Part C: Journal of Mechanical Engineering Science, 228 (4), 723741 (2014).
23. Chou, C. and Hannaford, B., “Measurement and modeling of mckibben pneumatic artificial muscles,” IEEE Trans. Robot. Autom. 12 (1), 90102 (1996).
24. Jamwal, P. K., Xie, S. Q., Hussain, S. and Parsons, J. G., “An adaptive wearable parallel robot for the treatment of ankle injuries,” IEEE/ASME Trans. Mechatronics 19 (1), 6475 (2012).
25. Zhu, X., Tao, G., Yao, B. and Cao, J., “Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy,” IEEE/ASME Trans. Mechatronics 13 (4), 441450 (2008).
26. Xing, K., Wang, Y., Zhu, Q. and Zhou, H., “Modeling and control of mckibben artificial muscle enhanced with echo state networks,” Control Eng. Pract. 20 (5), 477488 (2012).
27. Khoa, L. D., Truong, D. Q. and Ahn, K. K., “Synchronization controller for a 3-R planar parallel pneumatic artificial muscle robot using modified ANFIS algorithm,” Mechatronics 23 (4), 462479 (2013).
28. Man, Z., Paplinski, A. P. and Wu, H. R., “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. Autom. Control 39 (12), 24642469 (1994).
29. Yong, F., Yu, X. and Man, Z., “Non-singular terminal sliding mode control of rigid manipulators,” Automatica 38 (12), 21592167 (2002).
30. Shen, X., “Nonlinear model-based control of pneumatic artificial muscle servo systems,” Control Eng. Pract. 18 (3), 311317 (2010).
31. Shi, G. L. and Shen, W., “Hybrid control of a parallel platform based on pneumatic artificial muscles combining sliding mode controller and adaptive fuzzy CMAC,” Control Eng. Pract. 21 (1), 7686 (2013).
32. Ball, R. S., A Treatise on the Theory of Screws, Cambridge, UK (Cambridge University Press, 1990).
33. Liu, H., Huang, T. and Chetwynd, D. G., “A method to formulate a dimensionally homogeneous Jacobian of parallel manipulators,” IEEE Trans. Robot. 27 (1), 150156 (2011).
34. Ciblak, N. and Lipkin, H., “Asymmetric Cartesian Stiffness for the Modeling of Compliant Robotic Systems,” Proceedings of the 23rd Biennial ASME Mechanisms Conference, Minneapolis, MN (1994) pp. 197–204.
35. Ciblak, N. and Lipkin, H., “Synthesis of Cartesian Stiffness for Robotic Applications,” Proceedings of the IEEE International Conference on, Robotics and Automation, Detroit, Michigan (1999), vol. 3, pp. 2147–2152.
36. Gosselin, C. C. and Angeles, J. J., “A Global Performance Index for the Kinematic Optimization of Robotic Manipulators,” J. Mech. Des. 113 (3), 220226 (1991).
37. Chirikjian, G. S. and Kyatkin, A. B., Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups, Boca Raton, Florida (CRC Press 2000).
38. Gosselin, C. M. and Grenier, M., “On the determination of the force distribution in overconstrained cable-driven parallel mechanisms,” Meccanica 46 (1), 315 (2011).
39. Ouyang, P. R., Zhang, W. J. and Wu, F. X., “Nonlinear PD Control for Trajectory Tracking with Consideration of the Design for Control Methodology,” Proceedings of the IEEE International Conference on, Robotics and Automation ICRA'02, Washington, D.C. (2002) pp. 4126–4131.
40. Wu, F. X., Zhang, W. J., Li, Q. and Ouyang, P. R., “Integrated design and PD control of high-speed closed-loop mechanisms,” J. Dyn. Syst. Meas. Control 124 (4), 522528 (2002).


Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

  • Xingwei Zhao (a1), Bin Zi (a2) and Lu Qian (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed