Skip to main content Accessibility help
×
Home

A CORBA-based simulation and control framework for mobile robots

  • Zhang Zhen (a1), Cao Qixin (a1), Charles Lo (a1) and Zhang Lei (a1)

Summary

This paper presents a distributed multiple mobile robots framework which allows programming and control of virtual and real mobile robots. The system provides the map building, path planning, robot task planning, simulation, and actual robot control functions in an indoor environment. Users can program the virtual robots in a customized simulation environment and check the performance of execution, i.e., if the simulation result is satisfying, users can download the code to a real robot. The paper focuses on the distributed architecture and key technologies of virtual robots simulation and control of real robots. A method for construction and transfer of a key index value (which stores the robot configuration) is proposed. Using this method, only the robot key configuration index is needed to build the robot in the virtual environment. This results in reduced network load and improved real time performance of the distributed system. Experiments were conducted to compare the performance of the proposed system with the performance of a centralized system. The results show that the distributed system uses less system resources and has better real time performance. What is more, this framework has been applied to Yaskawa's robot “SmartPal.” The simulation and experiment results show that our robotic framework can simulate and control the robot to perform complex tasks.

Copyright

Corresponding author

*Corresponding author. E-mail: zzh2200_0@126.com, zzh2000@sjtu.edu.cn

References

Hide All
1.Matsukuma, K., Handa, H. and Yokoyama, K., “Vision-Based Manipulation System for Autonomous Mobile Robot ‘Smartpal’”. Proceedings of the Japan Robot Association Conference, Yaskawa Electric Corporation, Japan (Sep. 2004).
2.Chang-wu, Qiu, Qi-xin, Cao, Nagamatsu, Ikuo and Yokoyama, Kazuhiko, “Graphical programming and 3-D simulation environment for Robot,” Robot 27 (5), 436440 (Sep. 2005).
3.Object Management Group. White paper on benchmarking, Version 1.0, OMG document bench/99-12-01 (1999).
4.Henning, M. and Vinoski, S., Advanced CORBA Programming with C++ (Addison Wesley, Reading MA, 1999).
5.Object Management Group. OMG Robotics Domain Special Interesting Group (DSIG) Homepage. Available: http://robotics.omg.org.
6.Mizukawa, M., Matsuka, H., Koyama, T., Inukai, T., Noda, A., Tezuka, H., Noguchi, Y. and Otera, N., “ORiN Open Robot Interface for the Network – The Standard Network Interface for Industrial Robots and its Applications,” International Symposium on Robotics Stockholm (ISR2002), No.45 (Oct. 2002).
7.Mizukawa, M., Matsuka, H., Koyama, T., Inukai, T., Noda, A., Tezuka, H., Noguchi, Y. and Otera, N., “ORiN: Open Robot Interface for the Network – The Standard and Unified Network Interface for Industrial Robot Applications,” SICE Annual Conference, Osaka (2002), pp. 1160–1163.
8.Orocos: Open Robot Control Software. http://www.orocos.org.
9.Schlegel, C. and Worz, R., “The Software Framework SmartSoft for Implementing Sensorimotor Systems,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS '99, Kyongju, Korea (Oct. 1999) pp. 16101616.
10.Ozaki, Fumio, “Open Robot Controller Architecture (ORCA),” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2004), Workshop on Robot Middleware toward Standards, Sendai, Japan (Sep. 2004).
11.Ozaki, Fumio, “Open Robot Controller Architecture (ORCA),” Advanced Intelligent Mechatronics (AIM2003) Workshop: Middleware Technology for Open Robot Architecture, Kobe, Japan (Jul. 2003).
12.Sabe, Kohtaro, “Open-R: An Open Architecture for Robot Entertainment,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2003) Workshop: Middleware Technology for Open Robot Architecture, Kobe, Japan (Jul. 2003).
13.Klein, J., “BREVE: A 3-D Environment for the Simulation of Decentralized Systems and Artificial Life,” Proceedings of Artificial Life VIII, 8th International Conference on the Simulation and Synthesis of Living Systems (MIT Press, 2002) pp. 329334.
14.Montemerlo, M., Roy, N. and Thrun, S., “Perspectives on Standardization in Mobile Robot Programming: The Carnegie Mellon Navigation (CARMEN) Toolkit,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas (2003) pp. 2436–2441.
15.Côté, C., Brosseau, Y., Létourneau, D., Raïevsky, C. and Michaud, F., “Robotic software integration using MARIE,” Int. J. Adv. Robot. Syst. – (Special Issue on Software Development and Integration in Robotics) 3 (1), 5560 (2006).
16.Gerkey, B. P., Vaughan, R. T. and Howard, A., “The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems,” Proceedings of the International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal (Jun. 30–Jul. 3, 2003) pp. 317323.
17.Gerkey, B. P., Vaughan, R. T., Støy, K., Howard, A., Sukhatme, G. S. and Mataric, M. J., “Most Valuable Player: A Robot Device Server for Distributed Control,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001), Wailea, Hawaii (Oct. 29–Nov. 3, 2001) pp. 1226–1231.
18.Sun Microsystems Inc. Java IDL and RMI-IIOP Tools. Available: http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#idl (2004).
19.R&D Center Yaskawa Corporation. Instructions for RTLab API (Ver 1.1.2). Yaskawa Robotics Technology R&D Dept (2004).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed