Skip to main content Accessibility help

Cooperative object transportation using parallel line formation with a circular shift

  • Gyuho Eoh (a1), Jae D. Jeon (a1), Jung H. Oh (a1) and Beom H. Lee (a1)


This paper presents a new cooperative object transportation technique using parallel line formation with a circular shift. Typical areas of research in relation to object transportation are grasping, pushing, and caging techniques, but these require precise grasping behaviors, iterative motion correction according to the object pose, and the real-time acquisition of the object shape, respectively. In this paper, the proposed technique does not need to consider the shape or the pose of objects, and equipped tools are not necessary for object transportation because objects are transported by pushing behavior only. Multiple robots create parallel line formation using a virtual electric dipole field and then push multiple objects into the formation. This parallel line is extended to the goal using cyclic motion by the robots and the objects are transported to the goal by pushing behavior. The above processes are decentralized and activated based on the finite state machine of each robot. Simulations and practical experiments are presented to verify the proposed technique.


Corresponding author


Hide All
1. Arai, T., Pagello, E. and Parker, L. E., “Guest editorial: Advances in multirobot systems,” IEEE Trans. Robot. Autom. 18 (5), 655661 (2002).
2. Cao, Y. U., Fukunaga, A. S. and Kahng, A., “Cooperative mobile robotics: Antecedents and directions,” Auton. Robots. 4 (1), 727 (1997).
3. Spletzer, J., Das, A. K., Fierro, R., Taylor, C. J., Kumar, V. and Ostrowski, J. P., “Cooperative Localization and Control for Multi-Robot Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI (2001) pp. 631–636.
4. Ahmadabadi, M. N. and Nakano, E., “A “constrain and move” approach to distributed object manipulation,” IEEE Trans. Robot. Autom. 17 (2), 157172 (2001).
5. Shinde, V., Dutta, A. and Saxena, A., “Experiments on multi-agent capture of a stochastically moving object using modified projective path planning,” Robotica 31 (2), 267284 (2013).
6. Bicchi, A., “On the closure properties of robotic grasping,” Int. J. Robot. Res. 14 (4), 319334 (1999).
7. Liu, Y. H., “Qualitative test and force optimization of 3d frictional form-closure grasps using linear programming,” IEEE Trans. Robot. Autom. 15 (1), 163173 (1999).
8. Liu, Z., Kamogawa, H. and Ota, J., “Fast grasping of unknown objects through automatic determination of the required number of mobile robots,” Adv. Robotics 27 (6), 445458 (2013).
9. Groß, R., Tuci, E., Dorigo, M., Bonani, M. and Mondada, F., “Object Transport by Modular Robots that Self-Assemble,” Proceedings of IEEE International Conference on Robotics and Automation, Los Alamitos, CA (2006) pp. 2558–2564.
10. Mataric, M. J., Nilsson, M. and Simsarian, K. T., “Cooperative Multi-Robot Box-Pushing,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA (1995) pp. 556–561.
11. Li, Q. and Payandeh, S., “Manipulation of convex objects via two-agent point-contact push,” Int. J. Robot. Res. 26 (4), 377403 (2007).
12. Gerkey, B. P. and Matarić, M. J., “Sold!: Auction methods for multi-robot coordination,” IEEE Trans. Robot. Autom. 18 (5), 758768 (2002).
13. Eoh, G., Choi, J. S. and Lee, B. H., “Faulty robot rescue by multi-robot cooperation,” Robotica 31 (8), 12391249 (2013).
14. Pereira, G. A. S., Campos, M. F. M. and Kumar, V., “Decentralized algorithms for multi-robot manipulation via caging,” Int. J. Robot. Res. 23 (7–8), 783795 (2004).
15. Wan, W., Fukui, R., Shimosaka, M., Sato, T. and Kuniyoshi, Y., “Grasping by Caging: A Promising Tool to Deal with Uncertainty,” Proceedings of IEEE International Conference on Robotics and Automation, Saint Paul, MN (2012) pp. 5142–5149.
16. Donald, B., Gariepy, L. and Rus, D., “Distributed Manipulation of Multiple Objects using Ropes,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA (2000) pp. 450–457.
17. Fink, J., Cheng, P. and Kumar, V., “Cooperative Towing with Multiple Robots,” Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, USA (2008) pp. 1269–1276.
18. Eoh, G., Lee, K. W., Oh, J. H., Lee, S. H. and Lee, B. H., “Cooperative multiple-object towing with linked robots,” J. Commun. Comput. 10 (3), 385393 (2013).
19. Yamashita, A., Arai, T., Ota, J. and Asama, H., “Motion planning of multiple mobile robots for cooperative manipulation and transportation,” IEEE Trans. Robot. Autom. 19 (2), 223237 (2003).
20. Eoh, G., Cho, Y. and Lee, B. H., “Reconfigurable Formation Control for Multi-object Transportation,” Proceedings of the 12th International Conference on Distributed Autonomous Robotic Systems, Daejeon, South Korea (2014) pp. 304–305.
21. Ren, J., McIsaac, K. A. and Patel, R. V., “A potential model using generalized sigmoid functions,” IEEE Trans. Syst. Man Cybern. B. 37 (2), 477484 (2007).
22. Li, Z., Liu, G., Yang, Y. and You, J., “Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift,” IEEE Trans. Image Process. 21 (4), 21302140 (2012).
23. Cheng, D. K., Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, Reading, MA, 1989).
24. Igarashi, T., Kamiyama, Y. and Inami, M., “A Dipole Field for Object Delivery by Pushing on a Flat Surface,” Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK (2010) pp. 5149–5119.
25. Koh, K. C. and Cho, H. S., “A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints,” J. Intell. Robot. Syst. 24 (4), 367385 (1999).
26. Rubenstein, M., Cornejo, A. and Nagpal, R., “Programmable self-assembly in a thousand-robot swarm,” Science 345 (6198), 795799 (2014).
27. Kim, D., Jeong, K. H. and Lee, B. H., “An approach to multi-agent interactive control in an intelligent space,” Int. J. Control, Autom. Syst. 13 (3), 697708 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed