Skip to main content Accessibility help

A BCI-controlled robotic assistant for quadriplegic people in domestic and professional life

  • Sorin M. Grigorescu (a1), Thorsten Lüth (a2), Christos Fragkopoulos (a2), Marco Cyriacks (a2) and Axel Gräser (a2)...


In this paper, a Brain–Computer Interface (BCI) control approach for the assistive robotic system FRIEND is presented. The objective of the robot is to assist elderly and persons with disabilities in their daily and professional life activities. FRIEND is presented here from an architectural point of view, that is, as an overall robotic device that includes many subareas of research, such as human–robot interaction, perception, object manipulation and path planning, robotic safety, and so on. The integration of the hardware and software components is described relative to the interconnections between the various elements of FRIEND and the approach used for human–machine interaction. Since the robotic system is intended to be used especially by patients suffering from a high degree of disability (e.g., patients which are quadriplegic, have muscle diseases or serious paralysis due to strokes, or any other diseases with similar consequences for their independence), an alternative non-invasive BCI has been investigated. The FRIEND–BCI paradigm is explained within the overall structure of the robot. The capabilities of the robotic system are demonstrated in three support scenarios, one that deals with Activities of daily living (ADL) and two that are taking place in a rehabilitation workshop. The proposed robot was clinically evaluated through different tests that directly measure task execution time and hardware performance, as well as the acceptance of robot by end-users.


Corresponding author

*Corresponding author. email:


Hide All
1.Van der Loos, M. H. and Reinkensmeyer, D. J., “Rehabilitation and Health Care Robotics,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Springer-Verlag, Berlin, Heidelberg, Germany, May 2007) pp. 12231252.
2.Van der Loos, M. H., Mahoney, R. and Ammi, C., “Great Expectations for Rehabilitation Mechatronics in the Comming Decade,” In: Advances in Rehabilitation Robotics, Lect. Notes (Bien, Z. and Stefanov, D., eds.) (Springer-Verlag, Berlin, Heidelberg, Germany, 2004) pp. 427433.
3.Lange, C., “Blickgesteuerte Interaktion mit Peripheriegeraeten – Technische Loesung und ergonomische Absicherung,” In: Mensch und Maschine: wie Brain-Computer-Interfaces und andere Innovationen gelaehmten Menschen kommunizieren helfen (Pantke, K.-H., ed) (Springer-Verlag, Berlin, Heidelberg, Germany, 2010) pp. 163181.
4.Cousins, S., Gerkey, B., Conley, K. and Garage, W., “Sharing software with ROS [ROS topics],” IEEE Rob. Autom. Mag. 17 (2), 1214 (Jun. 2010).
5.Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz, C., Haegele, M. and Verl, A., “Care-O-Bot 3 – Creating a Product Vision for Service Robot Applications by Integrating Design and Technology,” Proceedings of the 2009 International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, Oct. 2009.
6.Martens, C., Ruchel, N., Lang, O., Ivlev, O. and Gräser, A., “A FRIEND for assisting handicapped people,” IEEE Rob. Autom. Mag. 8 (1)5765 (Mar. 2001).
7.Prenzel, O., Martens, C., Cyriacks, M., Wang, C. and Gräser, A., “System controlled user interaction within the service robotic control architecture MASSiVE,” Robotica (Special issue) 25 (2)237244 (Mar. 2007).
8.Allison, B., Wolpaw, E. and Wolpaw, J., “Brain-computer interface systems: progress and prospects,” Expert Rev. Med. Devices 4 (4)463474 (2007).
9.Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T., Pawelzik, H., Schalk, G., McFarland, D., Birbaumer, N. and Wolpaw, J., “Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface,” Neurology 64, 17751777 (2005).
10.Simpson, R. C., “Smart wheelchairs: A literature review,” Rehabil. Res. Dev. 42 (4), 423436 (Aug. 2005).
11.Topping, M., “Handy 1, A Robotic-Arm to Aid Independence for Severely Disabled People,” In: Integration of Assistive Technology in the Information Age (Mokhtari, M., ed.) (IOS Press, Netherlands, 2001) pp. 142147.
12.Mokhtari, M. and Amni, C., “Assistive Technology for the Disabled People: Should it Work? The French Approach,” Proceedings of the 2nd International Workshop on Human-friendly Welfare Robotic Systems, KAIST, Daejeon, South Korea (Jan. 2001).
13.De Witte, L., Goossens, M., Wessels, R., Van der Pijl, D., Gelderblom, G., Van Hoofd, W., Tilli, D., Dijcks, B. and Van Soest, K., “Cost-Effectiveness of Specialized Assistive Technology: the MANUS Robot Manipulator,” In: Annual International Society of Technology Assessment in Health Care Meeting, 16 (2000), 284 pp.
14.Tsui, K. M. and Yanco, H. A., “Human-in-the-Loop Control of an Assistive Robot Arm,” Proceedings of the Workshop on Manipulation for Human Environments, Robotics: Science and Systems Conference, Philadelphia, PA, USA (Aug. 19, 2006).
15.Bien, Z., Chung, M.-J., Chang, P.-H., Kwon, D.-S., Kim, D.-J., Han, J.-S., Kim, J.-H., Kim, D.-H., Park, H.-S., Kang, S.-H., Lee, K. and Lim, S.-C., “Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units,” Auton. Rob. 16 (2), 165191, (Nov. 2004).
16.Dune, C., Leroux, C. and Marchand, E., “Intuitive Human Interaction with an Arm Robot for Severely Handicapped People – A One Click Approach,” Proceeding of the IEEE 10th International Conference on Rehabilitation Robotics ICORR 2007, Noordwijk, Netherlands (Jun. 2007).
17.Grigorescu, S. M., “Robust Machine Vision for Service Robotics,” Ph.D. dissertation (Institute of Automation, Bremen University, Bremen, Germany, Jun. 2010).
18.Fragkopoulos, C. and Gräser, A., “A RRT-Based Path Planning Algorithm for Rehabilitation Robots,” Proceedings of the 41st ISR/Robotics 2010, Munich 2010, Munich, Germany (Jun. 2010).
19.Prenzel, O., “Process Model for the Development of Semi-Autonomous Service Robots,” Ph.D. dissertation (Institute of Automation, Bremen University, Bremen, Germany, Jul. 2009).
20.Valbuena, D., Cyriacks, M., Friman, O., Volosyak, I. and Gräser, A., “Brain-Computer Interface for High-Level Control of Rehabilitation Robotic Systems,” In: Proceedings of IEEE ICORR'07 (Jun. 2007) pp. 619–625.
21.Donchin, E., Spencer, K. and Wijesinghe, R., “The mental prosthesis: Assessing the speed of a P300-based brain-computer interface,” IEEE Trans. Rehabil. Eng. 8 (2), 174179 (Jun. 2000).
22.Edlinger, G., Holzner, C., Guger, C., Groenegress, C. and Slater, M., “Brain-Computer Interfaces for Goal-Orientated Control of a Virtual Smart Home Environment,” In: Proceedings of the 4th International IEEE/EMBS Conference on on Neural Engineering NER 09 (May 2009) pp. 463–465.
23.Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M. H. Jr. and Burdet, E., “A brain controlled wheelchair to navigate in familiar environments,” IEEE Trans. Neural Syst. Rehabil. Eng. 18, 590598 (Dec. 2010), PMID: 20460212.
24.Bell, C. J., Shenoy, P., Chalodhorn, R. and Rao, R. P. N., “Control of a humanoid robot by a noninvasive brain-computer interface in humans,” J. Neural Eng. 5 (2), 214220 (2008).
25.Teymourian, A., Lueth, T., Gräser, A., Felzer, T. and Nordmann, R., “Brain-Controlled Finite State Machine for Wheelchair Navigation,” In: Assets '08: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, New York, NY, USA (2008) pp. 257258.
26.Tangermann, M., Krauledat, M., Grzeska, K., Sagebaum, M., Vidaurre, C., Blankertz, B. and Müller, K.-R., “Playing Pinball with Non-Invasive BCI,” Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada (2009).
27.Tanaka, K., Matsunaga, K. and Wang, H. O., “Electroencephalogram-based control of an electric wheelchair,” IEEE Trans. Robot. 21 (4), 762766 (Aug. 2005).
28.Mandel, C., Lüth, T., Laue, T., Röfer, T., Gräser, A. and Krieg-Brückner, B., “Navigating a Smart Wheelchair with a Brain-Computer Interface Interpreting Steady-State Visual Evoked Potentials,” In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Oct. 2009) pp. 1118–1125.
29.Lebedev, M. A. and Nicolelis, M. A. L., “Brain-machine interfaces: Past, present and future,” Trends Neurosci. 29 (9)536546 (Sep. 2006).
30.Lueth, T., Ojdanic, D., Friman, O., Prenzel, O. and Gräser, A., “Low Level Control in a Semi-Autonomous Rehabilitation Robotic System via a Brain-Computer Interface,” Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics ICORR 2007, Noordwijk, Netherlands (Jun. 2007).
31.Neuper, C., Müller-Putz, G., Scherer, R. and Pfurtscheller, G., “Motor imagery and EEG-based control of spelling devices and neuroprostheses,” Prog. Brain Res. 159, 393409 (2006).
32.Wang, Y., Gao, X., Hong, B., Jia, C. and Gao, S., “Brain-computer interfaces based on visual evoked potentials,” IEEE Eng. Med. Biol. Mag. 27 (5), 6471 (2008).
33.Burkitt, G., Silberstein, R., Cadusch, P. and Wood, A., “Steady-state visual -evoked potentials and travelling waves,” Clin. Neurophysiol. 111, 246258 (2000).
34.Gao, X., Xu, X., Cheng, M. and Gao, S., “A BCI-based environmental controller for the motion-disabled,” IEEE Trans. Neural Syst. Rehabil. Eng. 11 (2), 137140 (Jun. 2003).
35.Friman, O., Volosyak, I. and Gräser, A., “Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces,” IEEE Trans. Biomed. Eng. 54 (4), 742750 (Apr. 2007).
36.Allison, B., Lüth, T., Valbuena, D., Teymourian, A., Volosyak, I. and Gräser, A., “BCI demographics: How many (and what kinds of) people can use an SSVEP BCI?IEEE Trans. Neural Syst. Rehabil. Eng. 18 (2), 107116 (Apr. 2010).
37.Volosyak, I., Cecotti, H. and Gräser, A., “Steady-State Visual Evoked Potential Response – Impact of the Time Segment Length,” In: Proceedings of the 7th International Conference on Biomedical Engineering, BioMed 2010, Innsbruck, Austria (Feb. 17–19, 2010) pp. 288292.
38.Bicchi, A., Peshkin, M. A. and Colgate, J. E., “Safety for Physical Human-Robot Interaction,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Springer-Verlag, Berlin, Heidelberg, Germany, May 2007).
39.Tsui, K. M., Feil-Seifer, D. J., Mataric, M. J. and Yanco, H. A., “Performance Evaluation Methods for Assistive Robotic Technology,” In: Performance Evaluation and Benchmarking of Intelligent Systems (Madhavan, R., Tunstel, E., and Messina, E., eds.) (Springer, New York, 2009) pp. 4166.
40.Volosyak, I., Cecotti, H., Valbuena, D. and Gräser, A., “Evaluation of the Bremen SSVEP-Based BCI in Real World Conditions,” Proceedings of IEEE ICORR'09 (Jun. 2009) pp. 322–331.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed