Skip to main content Accessibility help

Analysis, simulation, and implementation of a human-inspired pole climbing robot

  • A. Sadeghi (a1), H. Moradi (a1) and M. Nili Ahmadabadi (a1)


In this paper, we present the design, static analysis, simulation, and implementation of a novel design for a naturally stable climbing robot that has been inspired from human pole/tree climbers. The other benefits of this robot, besides being naturally stable, are its simple design, ease of control, light weight, simple mechanism, and fast climbing speed. The robot consists of three wheels, two free and one active wheel, which enable the robot to climb or descend poles. The free wheels are almost frictionless, while the active wheel has enough friction to be able to apply force on the pole for stable climbing or descending. The wheels are designed in V-shape such that the robot can compensate for misplacements eliminating possible detachment from poles. Although the robot can operate with a single free wheel, however, an extra free wheel is added to increase the stability and safety of the robot. In this paper, the static analysis of the robot is presented and the robot is simulated. Furthermore, the robot is actually implemented and successfully tested in two sizes, a small size and a big/full size. The full-scale prototype has been equipped with washing and inspection tools and tested washing actual street lights. The results show the unique characteristics of this robot that make it more stable if more weight is carried.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Krasnoslobodtsev, V. and Langevin, R., “Triz Application in Development of Climbing Robots,” First TRIZ Symposium, Japan (Sep. 2005).
2.Zhang, H., Zhang, J. and Zong, G., “Effective pneumatic scheme and control strategy of a climbing robot for class wall cleaning on high-rise building,” Int. J. Adv. Robot. Syst. 3 (2), 183190 2006.
3.Menon, C. and Sitti, M., “A biomimetic climbing robot based on the gecko,” J. Biomic Eng. 3, 115125 (2006).
4.Baghani, A., Ahmadabadi, M. Nili and Harati, A., “Kinematics Modeling of Wheel-Based Pole Climbing Robot (UT-PCR),” Proceedings of the International Conference on Robotics and Intelligent Systems, Beijing, China (2006) pp. 50075012.
5.White, T., Hewer, N., Luk, B. and Hazel, J. “The Design and Operational Performance of a Climbing Robot Used for Weld Inspection in Hazardous Environments,” Proceedings of the IEEE International Conference on Control Applications, Trieste, Italy (Sep. 1–4, 1998) pp. 451455.
6.Luk, B., Cooke, D., Galt, S., Collie, A. and Chen, S., “Intelligent legged climbing service robot for remote maintenance applications in hazardous environments,” Int. J. Robot. Auton. Syst. 53 (2), 142152 (2005).
7.Tavakoli, M., Zakerzadeh, M. R., Vossughi, G. R. and Bagheri, S., “Design and Prototyping of a Hybrid Pole Climbing and Manipulating Robot with Minimum DOFs for Construction and Service Applications,” Proceedings of the Climbing and Walking Robots (CLAWAR), Madrid, Spain (2004) pp. 10711076.
8.Degani, A., Choset, H. and Mason, M. T., “DSAC—Dynamic, Single Actuated Climber. Local Stability and Bifurcations,” Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK (2010) pp. 28032809.
9.Abderrahim, M., Balaguer, C., Gimenez, A., Pastor, J. M. and Padron, V.M., “ROMA: A Climbing Robot for Inspection Operations,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan (1999) pp. 23032308.
10.Bonaccorso, F., Bruno, C., Longo, D. and Muscato, G., “Structure and Model Identification of a VORTEX-Based Suction Cup,” Proceedings of the 11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Coimbra, Portugal (Sep. 8–10, 2008) pp. 303310.
11.Haynes, G. C., Khripin, A., Lynch, G., Amory, J., Saunders, A., Rizzi, A. and Koditschek, D. E., “Rapid Pole Climbing with a Quadrupedal Robot,” Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan (May 2009) pp. 27672772.
12.Balaguer, C., Gimenes, A., Pastor, J., Padron, V. and Abderrahim, C., “A climbing autonomous robot for inspection application in 3D complex environments,” Robotica 18 (3), 287297 (2000).
13.Xu, Z. and Ma, P., “A wall-climbing robot for labeling scale of oil tank's volume,” Robotica 20 (2), 203207 (2002).
14.La Rosa, G., Messina, M., Muscato, G. and Sinatra, R., “A low cost lightweight climbing robot for the inspection of vertical surfaces,” Mechatronics 12 (1), 7196 (2002).
15.Lal Tummala, R., Mukherjee, R., Xi, N., Aslam, D., Dulimarta, H., Xiao, J., Minor, M. and Dang, G., “Climbing the walls,” IEEE Robot. Autom. Mag. 9 (4), 1019 (2002).
16.Zhu, J., Sun, D. and Tso, S., “Development of a tracked climbing robot,” J. Intell. Robot. Syst. 35 (4), 427444 (2002).
17.Bretl, T., “Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem,” Int. J.Robot. Res. 25 (4), 317342 (2006).
18.Kennedy, B., Okon, A., Aghazarian, H., Badescu, M., Bao, X., Barcohen, Y., Chang, Z., Dabiri, B., Garrett, M., Magnone, L. and Sherrit, S., “Lemur iib: A Robotic System for Steep Terrain Access,” Proceedings of the 8th International Conference on Climbing and Walking Robots, London, UK (2005).
19.Lipkin, K., Brown, I., Peck, A., Choset, H., Rembisz, J., Gianfortoni, P. and Naaktgeboren, A., “Differentiable and Piecewise Differentiable Gaits for Snake Robots,” Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, San Diego, CA (Nov. 2007) pp. 18641869.
20.McKenna, J., Anhalt, D., Bronson, F., Brown, H., Schwerin, M., Shammas, E. and Choset, H., “Toroidal Skin Drive for Snake Robot Locomotion,” Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA (May 2008).
21.Fauroux, J. C. and Morillon, J., “Design of a climbing robot for cylindro-conic poles based on rolling self-locking,” Ind. Robot-An Int. J. 37 (3), 297–292 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed