Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 0.171 Render date: 2021-04-13T01:53:52.058Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Neural network inverse control techniques for PD controlled robot manipulator

Published online by Cambridge University Press:  01 May 2000

Seul Jung
Affiliation:
Robotics and Computational Intelligence Laboratory, Chungnam National University, Taejon (Korea) 305–764
T.C. Hsia
Affiliation:
Robotics Research Laboratory, Department of Electrical and Computer Engineering, University of California, Davis, CA 95616 (USA)

Abstract

In this paper neural network (NN) control techniques for non-model based PD controlled robot manipulators are proposed. The main difference between the proposed technique and the existing feedback error learning (FEL) technique is that compensation of robot dynamics uncertainties is done outside the control loop by modifying the desired input trajectory. By using different NN training signals, two NN control schemes are developed. One is comparable to that in the FEL technique and another has to deal with the Jacobian of the PD controlled robot dynamic system. Performances of both controllers for various trajectories with different PD controller gains are examined and compared with that of the FEL controller. It is shown that the new control technique performed better and robust to PD controller gain variations.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 11
Total number of PDF views: 117 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neural network inverse control techniques for PD controlled robot manipulator
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Neural network inverse control techniques for PD controlled robot manipulator
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Neural network inverse control techniques for PD controlled robot manipulator
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *