Skip to main content Accessibility help
×
Home

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        A handful of intron-containing genes produces the lion's share of yeast mRNA
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        A handful of intron-containing genes produces the lion's share of yeast mRNA
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        A handful of intron-containing genes produces the lion's share of yeast mRNA
        Available formats
        ×
Export citation

Abstract

Two studies have provided separate pieces of information that bear on the functional and evolutionary significance of introns in the budding yeast Saccharomyces cerevisiae (Holstege et al., 1998; Spingola et al., 1999). By the measure of the number of introns within its genes, budding yeast seems a disappointing eukaryote. Fewer than 250 of the more than 6,200 annotated genes are known to have introns, and fewer than 10 are known have more than one intron (Spingola et al., 1999). In contrast, metazoan genes are estimated to average nearly 10 introns, and the intronless gene is the exception rather than the rule. Although many essential yeast genes have introns, it would appear that introns are on the way out of the yeast genome, perhaps by a cDNA-directed homologous recombination mechanism proposed by Fink (1987).