Skip to main content Accessibility help
×
Home

STRONG COMPLETENESS OF MODAL LOGICS OVER 0-DIMENSIONAL METRIC SPACES

  • ROBERT GOLDBLATT (a1) and IAN HODKINSON (a2)

Abstract

We prove strong completeness results for some modal logics with the universal modality, with respect to their topological semantics over 0-dimensional dense-in-themselves metric spaces. We also use failure of compactness to show that, for some languages and spaces, no standard modal deductive system is strongly complete.

Copyright

Corresponding author

*SCHOOL OF MATHEMATICS AND STATISTICS VICTORIA UNIVERSITY WELLINGTON, NEW ZEALAND E-mail: Rob.Goldblatt@msor.vuw.ac.nz
DEPARTMENT OF COMPUTING IMPERIAL COLLEGE LONDON LONDON, UK E-mail: i.hodkinson@imperial.ac.uk

References

Hide All
Bell, J. L. & Slomson, A. B. (1969). Models and Ultraproducts: An Introduction. Amsterdam: North-Holland.
Bezhanishvili, G., Gabelaia, D., & Lucero-Bryan, J. (2015). Modal logics of metric spaces. The Review of Symbolic Logic , 8, 178191.
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Tracts in Theoretical Computer Science. Cambridge, UK: Cambridge University Press.
Brouwer, L. E. J. (1910). On the structure of perfect sets of points. Proceedings of the Academy Amsterdam, 12, 785794.
Chagrov, A. & Zakharyaschev, M. (1997). Modal Logic. Oxford Logic Guides, Vol. 35. Oxford: Clarendon Press.
Engelking, R. (1989). General Topology. Berlin: Heldermann Verlag.
Flum, J. & Ziegler, M. (1980). Topological Model Theory. Lecture Notes in Mathematics, Vol. 769. Berlin: Springer.
Gatto, A. (2016). Studies on Modal Logics of Time and Space. Ph.D. Thesis, Imperial College London.
Gerhardt, S. (2004). A construction method for modal logics of space. Master’s Thesis, ILLC, University of Amsterdam.
Givant, S. & Halmos, P. (2009). Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. New York: Springer.
Goldblatt, R. & Hodkinson, I. (2016). The tangled derivative logic of the real line and zero-dimensional spaces. In Beklemishev, L., Demri, S., and Máté, A., editors. Advances in Modal Logic , Vol. 11. London: College Publications, pp. 342361.
Goldblatt, R. & Hodkinson, I. (2017). Spatial logic of tangled closure operators and modal mu-calculus. Annals of Pure and Applied Logic , 168, 10321090.
Goldblatt, R. & Hodkinson, I. (2018). The finite model property for logics with the tangle modality. Studia Logica, 106, 131166.
Koppelberg, S. (1989). General theory of boolean algebras. In Monk, J. D., editor. Handbook of Boolean Algebras, Vol. 1. Amsterdam: North-Holland. With the cooperation of Robert Bonnet.
Kremer, P. (2013). Strong completeness of S4 for any dense-in-itself metric space. The Review of Symbolic Logic , 6, 545570.
Kudinov, A. (2006). Topological modal logics with difference modality. In Governatori, G., Hodkinson, I., and Venema, Y., editors. Advances in Modal Logic, Vol. 6. London: College Publications, pp. 319332.
Kudinov, A. & Shehtman, V. (2014). Derivational modal logics with the difference modality. In Bezhanishvili, G., editor. Leo Esakia on Duality in Modal and Intuitionistic Logics. Outstanding Contributions to Logic, Vol. 4. Dordrecht: Springer, pp. 291334.
McKinsey, J. & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141191.
McKinsey, J. & Tarski, A. (1948). Some theorems about the sentential calculi of Lewis and Heyting. The Journal of Symbolic Logic , 13, 115.
Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Warszawa: Państwowe Wydawnictwo Naukowe.
Stone, A. H. (1948). Paracompactness and product spaces. Bulletin of the American Mathematical Society , 54, 977982.
Tarski, A. (1938). Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31, 103134.
Willard, S. (1970). General Topology. Reading, Mass: Addison-Wesley.

Keywords

STRONG COMPLETENESS OF MODAL LOGICS OVER 0-DIMENSIONAL METRIC SPACES

  • ROBERT GOLDBLATT (a1) and IAN HODKINSON (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.