Skip to main content Accessibility help
×
Home

NON–WELL-FOUNDED DERIVATIONS IN THE GÖDEL-LÖB PROVABILITY LOGIC

  • DANIYAR SHAMKANOV (a1)

Abstract

We consider Hilbert-style non–well-founded derivations in the Gödel-Löb provability logic GL and establish that GL with the obtained derivability relation is globally complete for algebraic and neighbourhood semantics.

Copyright

Corresponding author

*STEKLOV MATHEMATICAL INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES GUBKINA STR. 8, 119991, MOSCOW, RUSSIA and NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS FACULTY OF MATHEMATICS USACHEVA STR. 6, 119048, MOSCOW, RUSSIA E-mail: daniyar.shamkanov@gmail.com

References

Hide All
[1]Abashidze, M. (1985). Ordinal completeness of the Gödel-Löb modal system. Intensional Logics and the Logical Structure of Theories. Tbilisi: Metsniereba, pp. 4973. In Russian.
[2]Aguilera, J. & Fernández-Duque, D. (2017). Strong completeness of provability logic for ordinal spaces. The Journal of Symbolic Logic, 82 (2), 608628.
[3]Beklemishev, L. & Gabelaia, D. (2014). Topological interpretations of provability logic. In Bezhanishvili, G., editor. Outstanding Contributions to Logic. Leo Esakia on Duality in Modal and Intuitionistic Logics, Vol. 4. Dordrecht: Springer, pp. 257290.
[4]Blass, A. (1990). Infinitary combinatorics and modal logic. The Journal of Symbolic Logic, 55(2), 761778.
[5]Esakia, L. (1981). Diagonal constructions, Löb’s formula and Cantor’s scattered space. Studies in Logic and Semantics, 132(3), 128143. In Russian.
[6]Hakli, R. & Negri, S. (2011). Does the deduction theorem fail for modal logic? Synthese, 187(3), 849867.
[7]Iemhoff, R. (2016). Reasoning in circles. In van Eijck, J., Iemhoff, R., and Joosten, J. J., editors. Liber Amicorum Alberti. A Tribute to Albert Visser. London: College Publications, pp. 165178.
[8]Kracht, M. (1999). Tools and Techniques in Modal Logic. Studies in Logic, Vol. 142. Amsterdam: Elsevier.
[9]Litak, T. (2005). An Algebraic Approach to Incompleteness in Modal Logic. Ph.D. Thesis, Japan Advanced Institute of Science and Technology.
[10]Magari, R. (1975). The diagonalizable algebras (the algebraization of the theories which express Theor. II). Bollettino dell’Unione Matematica Italiana, 4(12), 117125.
[11]Mazurkiewicz, S. & Sierpiński, W. (1920). Contribution à la topologie des ensembles dénombrables. Fundamenta Mathematicae, 1, 1727.
[12]Montague, R. (1970). Universal grammar. Theoria, 36, 373398.
[13]Pakhomov, F. & Walsh, J. (2018). Reflection ranks and ordinal analysis. arXiv:1805.02095.
[14]Scott, D. (1970). Advice on modal logic. In Lambert, K., editor. Philosophical Problems in Logic. Doredrecht: Reidel, pp. 143173.
[15]Shamkanov, D. (2014). Circular proofs for the Gödel-Löb provability logic. Mathematical Notes, 96(3), 575585.
[16]Shamkanov, D. (2017). Global neighbourhood completeness of the Gödel-Löb provability logic. In Kennedy, J. and de Queiroz, R., editors. Logic, Language, Information, and Computation. 24th International Workshop, WoLLIC 2017 (London, UK, July 18–21, 2017). Lecture Notes in Computer Science, Vol. 103888. Berlin: Springer, pp. 358371.
[17]Shehtman, V. (2005). On neighbourhood semantics thirty years later. In Artemov, S., Barringer, H., d’Avila Garces, A., Lamb, L. C., and Woods, J., editors. We Will Show Them ! Essays in Honour of Dov Gabbay, Vol. 2. London: College Publications, pp. 663692.
[18]Simmons, H. (1975). Topological aspects of suitable theories. Proceedings of the Edinburgh Mathematical Society, 19(4), 383391.
[19]Smoryński, C. (1985). Self-Reference and Modal Logic. New York: Springer.
[20]Solovay, R. (1976). Provability interpretations of modal logic. Israel Journal of Mathematics, 25, 287304.
[21]Wen, X. (2019). Modal logic via global consequence. arXiv:1910.02446v1.

Keywords

NON–WELL-FOUNDED DERIVATIONS IN THE GÖDEL-LÖB PROVABILITY LOGIC

  • DANIYAR SHAMKANOV (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.