Skip to main content Accessibility help


  • PETER FRITZ (a1)


Robert Stalnaker has recently advocated propositional contingentism, the claim that it is contingent what propositions there are. He has proposed a philosophical theory of contingency in what propositions there are and sketched a possible worlds model theory for it. In this paper, such models are used to interpret two propositional modal languages: one containing an existential propositional quantifier, and one containing an existential propositional operator. It is shown that the resulting logic containing an existential quantifier is not recursively axiomatizable, as it is recursively isomorphic to second-order logic, and a natural candidate axiomatization for the resulting logic containing an existential operator is shown to be incomplete.


Corresponding author



Hide All
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge Tracts in Theoretical Computer Science, Vol. 53. Cambridge: Cambridge University Press.
Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge: Cambridge University Press.
Davey, B. A. & Priestley, H. A. (2002). Introduction to Lattices and Order (second edition). Cambridge: Cambridge University Press.
Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36(3), 336346.
Fine, K. (1974a). An ascending chain of S4 logics. Theoria, 40(2), 110116.
Fine, K. (1974b). An incomplete logic containing S4. Theoria, 40(1), 2329.
Fine, K. (1977). Properties, propositions and sets. Journal of Philosophical Logic, 6(1), 135191.
Fine, K. (1980). First-order modal theories II – Propositions. Studia Logica, 39(2), 159202.
Fritz, P. (2013). Modal ontology and generalized quantifiers. Journal of Philosophical Logic, 42(4), 643678.
Fritz, P. (2016). Propositional contingentism. The Review of Symbolic Logic, 9(1), 123142.
Fritz, P. (unpublished). Higher-order contingentism, part 3: Expressive limitations.
Fritz, P. & Goodman, J. (2016). Higher-order contingentism, part 1: Closure and generation. Journal of Philosophical Logic, 45(6), 645695.
Fritz, P. & Lederman, H. (2015). Standard state space models of unawareness. In Ramanujam, R., editor. Proceedings of the 15th Conference on Theoretical Aspects of Rationality and Knowledge. Pittsburgh: Carnegie Mellon University, pp. 163172.
Gallin, D. (1975). Intensional and Higher-Order Modal Logic. Amsterdam: North-Holland.
Givant, S. & Halmos, P. (2009). Introduction to Boolean Algebras. New York: Springer.
Goranko, V. & Passy, S. (1992). Using the universal modality: Gains and questions. Journal of Logic and Computation, 2(1), 530.
Hodges, W. (1997). A Shorter Model Theory. Cambridge: Cambridge University Press.
Humberstone, L. (2002). The modal logic of agreement and noncontingency. Notre Dame Journal of Formal Logic, 43(2), 95127.
Jónsson, B. & Tarski, A. (1951). Boolean algebras with operators. Part I. American Journal of Mathematics, 73(4), 891939.
Kaminski, M. & Tiomkin, M. (1996). The expressive power of second-order propositional modal logic. Notre Dame Journal of Formal Logic, 37(1), 3543.
Kaplan, D. (1970). S5 with quantifiable propositional variables. Journal of Symbolic Logic, 35(2), 355.
Kremer, P. (1993). Quantifying over propositions in relevance logic: Nonaxiomatizability of primary interpretations of ∀p and ∃p . Journal of Symbolic Logic, 58(1), 334349.
Kremer, P. (1997). On the complexity of propositional quantification in intuitionistic logic. Journal of Symbolic Logic, 62(2), 529544.
Lewis, C. I. & Langford, C. H. (1932). Symbolic Logic. London: Century.
Lewis, D. (1988a). Relevant implication. Theoria, 54(1), 161174.
Lewis, D. (1988b). Statements partly about observation. Philosophical Papers, 17(1), 131.
Makinson, D. (1969). On the number of ultrafilters of an infinite boolean algebra. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 15(7–12), 121122.
Makinson, D. (1971). Some embedding theorems for modal logic. Notre Dame Journal of Formal Logic, 12(2), 252254.
Nerode, A. & Shore, R. A. (1980). Second order logic and first-order theories of reducibility orderings. In Barwise, J., Keisler, H. J., and Kunen, K., editors. The Kleene Symposium. Amsterdam: North Holland, pp. 181200.
Segerberg, K. (1971). An Essay in Classical Modal Logic. Filosofiska Studier, Vol. 13. Uppsala: Uppsala Universitet.
Stalnaker, R. (2012). Mere Possibilities. Princeton: Princeton University Press.
Thomason, S. K. (1972). Semantic analysis of tense logic. The Journal of Symbolic Logic, 37(1), 150158.
Thomason, S. K. (1974). An incompleteness theorem in modal logic. Theoria, 40(1), 3034.
von Kutschera, F. (1994). Global supervenience and belief. Journal of Philosophical Logic, 23(1), 103110.
Williamson, T. (2013). Modal Logic as Metaphysics. Oxford: Oxford University Press.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed