Skip to main content Accessibility help
×
×
Home

FREGE MEETS ZERMELO: A PERSPECTIVE ON INEFFABILITY AND REFLECTION

  • STEWART SHAPIRO (a1) and GABRIEL UZQUIANO (a2)

Extract

1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.

Copyright

Corresponding author

*THE OHIO STATE UNIVERSITY COLUMBUS, OH 43210, USA AND UNIVERSITY OF ST ANDREWS ARCHÉ E-mail:shapiro.4@osu.edu
UNIVERSITY OF OXFORD PEMBROKE COLLEGE OXFORD OX1 1DW, UK E-mail:gabriel.uzquiano@philosophy.ox.ac.uk

References

Hide All
Antonelli, A., & May, R. (2005). Frege's other program. Notre Dame Journal of Formal Logic, 46, 117.
Bar-Hillel, Y., Fraenkel, A., & Lévy, A. (1973). Foundations of Set Theory. Amsterdam: North Holland.
Bernays, P. (1961). Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehere. In Bar-Hillel, Y., Poznanski, E. I. J., Robinson, A., and Rabin, M. O., editors. Essays on the Foundations of Mathematics. Jerusalem: Magnes Press, pp. 349.
Bernays, P. (1976). On the problem of schemata of infinity in axiomatic set theory. Sets and Classes: On the Work of Paul Bernays. Amsterdam: North Holland, pp. 121172.
Boolos, G. (1971). The iterative conception of set. Journal of Philosophy, 68, 215231. Reprinted in Boolos (1998a), 1329.
Boolos, G. (1989). Iteration again. Philosophical Topics, 17, 521. Reprinted in Boolos (1998a), 88104.
Boolos, G. (1993). Whence the contradiction?. Aristotelian Society, Supplementary Volume, 67, 213233. Reprinted in Boolos (1998a), 220236.
Boolos, G. (1998a). Logic, logic, and logic. Jeffrey, Richard, editor. Cambridge: Harvard University Press.
Boolos, G. (1998b). Must we believe in set theory? See Boolos, G. (1998a), 120–132. Also in (2000) Between Logic and Intuition: Essays in Honor of Charles Parsons. Sher, G., and Tieszen, R., editors. Cambridge: Cambridge University Press, 257268.
Burgess, J. (2004). E pluribus unum: plural logic and set theory. Philosophia Mathematica, 12(3), 13221.
Burgess, J. (2005). Fixing Frege. Princeton University Press.
Dummett, M. (1991). Frege: Philosophy of Mathematics. London: Duckworth.
Ebbinghaus, H.-D. (2003). Zermelo: definiteness and the universe of definable sets. History and Philosophy of Logic, 24, 197219.
Friedman, H. (2003). Similar Subclasses. Unpublished typescript. Available from: http://www.math.ohio-state.edu/~friedman/pdf/SimSubc031103.pdf.
Hale, B. (2000). Abstraction and set theory. Notre Dame Journal of Formal Logic, 41(4), 379398.
Hale, B., & Wright, C. (2001). The Reason's Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics. Oxford: Clarendon Press.
Hilbert, D., & Ackermann, W. (1928). Die Grundlagen der theoretischen Logik. Berlin: Springer.
Jané, I., & Uzquiano, G. (2004). Well-and non-well-founded Fregean extensions. Journal of Philosophical Logic, 33(5), 437465.
Koellner, P. (2003). The search for new axioms, PhD Thesis, Massachusetts Institute of Technology.
Lévy, A. (1960a). Axiom schemata of strong infinity in axiomatic set theory. Pacific Journal of Mathematics, 10, 223238.
Lévy, A. (1960b). Principles of reflection in axiomatic set theory. Fundamenta Mathematicae, 49, 110.
Lévy, A. (1968). On von neumann's axiom system for set theory. The American Mathematical Monthly, 75(7), 762763.
Linnebo, Ø. (2007). Burgess on plural logic and set theory. Philosophia Mathematica, 15(1), 7993.
Moore, G. H. (1982). Zermelo's Axiom of Choice: Its Origins, Development and Influence. New York: Springer-Verlag.
Rayo, A., & Uzquiano, G., editors. (2006). Absolute Generality. Oxford: Oxford University Press.
Shapiro, S. (1987). Principles of reflection and second-order logic. Journal of Philosophical Logic, 16, 309333.
Shapiro, S. (1991). Foundations without Foundationalism: A Case for Second-Order Logic. Oxford: Clarendon Press.
Shapiro, S. (2003). Prolegomenon to any future neo-logicist set theory: abstraction and indefinite extensibility. British Journal for the Philosophy of Science, 54, 5991.
Shapiro, S., & Wright, C. (2006). All things indefinitely extensible. In Rayo, A. & Uzquiano, G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 255304.
Tait, W. (1990). The iterative hierarchy of sets. Ivyum, 39, 6579.
Tait, W. (1998). Zermelo's conception of set theory and reflection principles. In Schrin, M., editor. The Philosophy of Mathematics Today. Oxford University Press, pp. 469483.
Tait, W. (2000). Cantor's grundlagen and the paradoxes of set theory. In Sher, G. & Tieszen, R., editors. Between Logic and Intuition: Essays in Honour of Charles Parsons. Cambridge: Cambridge University Press, pp. 269290.
Van Dalen, D., & Ebbinghaus, H.-D. (2000). Zermelo and the skolem paradox. The Bulletin of Symbolic Logic, 6, 145161.
von Neumann, J. (1925). Eine Axiomatisierung der Mengenlehre. Journal für die Reine und Angewandte Mathematik, 154, 219240.
von Neumann, J. (1928). Die Axiomatizierung der Mengenlehre. Mathematische Zeitschrift, 27, 339422.
Wang, H. (1974). From Mathematics to Philosophy. London: Routledge & Kegan Paul.
Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16, 2947.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed