Skip to main content Accessibility help
×
Home

CHARACTER AND OBJECT

  • JEREMY AVIGAD and REBECCA MORRIS

Abstract

In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. Modern presentations of the proof are explicitly of higher-order, in that they involve quantifying over and summing over Dirichlet characters, which are certain types of functions. The notion of a character is only implicit in Dirichlet’s original proof, and the subsequent history shows a very gradual transition to the modern mode of presentation.

In this essay, we study the history of Dirichlet’s theorem with an eye towards understanding the methodological pressures that influenced some of the ontological shifts that occurred in nineteenth century mathematics. In particular, we use the history to understand some of the reasons that functions are treated as ordinary objects in contemporary mathematics, as well as some of the reasons one might want to resist such treatment.

Copyright

Corresponding author

*DEPARTMENT OF PHILOSOPHY CARNEGIE MELLON UNIVERSITY E-mail: avigad@cmu.edu
DEPARTMENT OF PHILOSOPHY CARNEGIE MELLON UNIVERSITY E-mail: email@rebeccaleamorris.com

References

Hide All
Avigad, J. Modularity in mathematics, in preparation.
Avigad, J., & Morris, R. (2014). The of “character” in Dirichlet’s theorem on primes in an arithmetic progression. Archive for History of Exact Sciences, 68(3), 265326.
Avigad, J., & Morris, R. Character and object (expanded version), unpublished. http://arxiv.org/abs/1505.07238.
Curtis, C. W. (1999). Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer. American Mathematical Society and London Mathematical Society, Providence, RI.
de la Vallée Poussin, C. J. (1895–1896). Démonstration simplifiée du théorèm de Dirichlet sur la progression arithmétique. Mémoires couronnés et autres mémoires publiés par L’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 53.
Dedekind, R. (1932). In Fricke, R., Noether, E., and Ore, Ö., editors. Gesammelte mathematische Werke, Vols. 1–3. Braunschweig: F. Vieweg & Sohn. Reprinted by Chelsea Publishing Co., New York, 1968.
Dirichlet, J. P. G. L. (1837a). Beweis eines Satzes über die arithmetische Progression. Bericht über die Verhandlungen der königlich Presussischen Akademie der Wissenschaften Berlin. Reprinted in Dirichlet (1889), pp. 309312.
Dirichlet, J. P. G. L. (1837b). Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der königlich Preussischen Akademie der Wissenschaften, 4581. Reprinted in Dirichlet (1889), pp. 313–342. Translated by Stefan, Ralf as “There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime.”
Dirichlet, J. P. G. L. (1840). Über eine Eigenschaft der quadratischen Formen. Journal für die reine und angewandte Mathematik, 21, 98100.
Dirichlet, J. P. G. L. (1841). Untersuchungen über die Theorie der complexen Zahlen. Journal für die reine und angewandte Mathematik, 22, 190194.
Dirichlet, J. P. G. L. (1863). In Dedekind, R., editor. Vorlsesungen über Zahlentheorie . Braunschweig, Germany: Vieweg. Subsequent editions in 1871, 1879, 1894, with “supplements” by Dedekind, Richard. Translated by John Stillwell, with introductory notes, as Lectures on Number Theory, American Mathematical Society, Providence, RI, 1999.
Dirichlet, J. P. G. L. (1889). In Kronecker, L., editor. Werke. Berlin: Georg Reimer.
Edwards, H. M. (1984). Galois Theory. New York: Springer.
Euler, L. (1748). Introductio in analysin infinitorum, tomus primus. Lausannae. Publications E101 and E102 in the Euler Archive.
Frege, G. (1904). Was ist eine Funktion? In Meyer, S., editor, Festschrift Ludwig Boltzmann gewidmet zum sechzigsten Geburtstage. Leipzig: J. A. Barth. Reprinted in Frege (2002) and translated as “What is a function?” In Geach, P. and Black, M., editors, Translations from the Philosophical Writings of Gottlob Frege. Oxford: Oxford University Press, 1980.
Frege, G. (2002). In Textor, M. editor, Funktion – Begriff – Bedeutung. Göttingen: Vandenhoeck and Ruprecht.
Gauss, C. F. (1801). Disquisitiones Arithmeticae. Leipzig: G. Fleischer. Reprinted in Gauss’ Werke, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1863. Translated with a preface by Clarke, Arthur A., Yale University Press, New Haven, 1966, and republished by Springer, New York, 1986.
Gray, J. (1992). The nineteenth-century revolution in mathematical ontology. In Gillies, D., editor, Revolutions in Mathematics. Oxford: Oxford University Press, pp. 226248.
Hadamard, J. (1896). Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bulletin de la Société Mathématique de France, 24, 199220.
Hawkins, T. (1971). The origins of the theory of group characters. Archive for History of Exact Sciences, 7, 142170.
Kronecker, L. (1870). Auseinandersetzung einiger eigenschaften der klassenzahl idealer complexer zahlen. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 881–882. Reproduced in Kronecker (1968), vol. I, pp. 271282.
Kronecker, L. (1895–1930). In Hensel, K., editor, Werke, vol. 1–5. Leipzig: B. G. Teubner. Reprinted by Chelsea Publishing Co., New York, 1968.
Kronecker, L. (1901). In Hensel, Kurt, editor. Vorlesungen über Zahlentheorie. Leipzig: B. G. Teubner.
Kummer, E. E. (1846). Zur Theorie der complexen Zahlen. Koniglich Akademie der Wissenschaft Berlin, Monatsbericht, 87–97. Also in Journal für die reine und angewandte Mathematik, 35, 319–326, 1847, and in Kummer’s Collected Papers, edited by André Weil, Springer-Verlag, Berlin, 1975, vol. 1, 203–210.
Landau, E. (1909). Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1. Leipzig: B. G. Teubner.
Landau, E. (1927). Vorlesungen über Zahlentheorie. Leipzig: S. Hirzel.
Mach, E. (1960). The Science of Mechanics: A Critical and Historical Account of its Development. Translated by McCormack, T. J., La Salle, Illinois: The Open Court Publishing Co.
Mancosu, P., editor. (2008). The Philosophy of Mathematical Practice. Oxford: Oxford University Press.
Manders, K. The Euclidean diagram. In Mancosu (2008), pp 80133.
Morris, R. (2011). Character and object. Master’s thesis, Carnegie Mellon University.
Quine, W. V. O. (1948). On what there is. The Review of Metaphysics, 2, 2138. Reprinted in Quine, W. V. O. (1980) From a Logical Point of View. Cambridge: Harvard University Press.
Quine, W. V. O. (1969). Ontological Relativity, and Other Essays. New York: Columbia University Press.
Tignol, J.-P. (2001). Galois’ Theory of Algebraic Equations. New Jersey: World Scientific.
Urquhart, A. Mathematics and physics: strategies of assimilation. In Mancosu (2008), pp. 417440.
Weber, H. (1882). Beweis des Satzes, dass jede eigentlich primitive quadratische Form unendlich viele Primzahlen darzustellen fähig ist. Mathematische Annalen, 20, 301329.
Wilson, M. (1994). Can we trust logical form? The Journal of Philosophy, 91, 519544.
Wittgenstein, L. (1989). Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge, 1939. Chicago: University of Chicago Press.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed